Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T23:05:28.860Z Has data issue: false hasContentIssue false

Instability wave–streak interactions in a supersonic boundary layer

Published online by Cambridge University Press:  13 October 2017

Pedro Paredes*
Affiliation:
Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681, USA
Meelan M. Choudhari
Affiliation:
Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681, USA
Fei Li
Affiliation:
Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681, USA
*
Email address for correspondence: pedro.paredes@nasa.gov

Abstract

The interaction of stationary streaks undergoing non-modal growth with modally unstable instability waves in a supersonic flat-plate boundary-layer flow is studied using numerical computations. For incompressible flows, previous studies have shown that boundary-layer modulation due to streaks below a threshold amplitude level can stabilize the Tollmien–Schlichting instability waves, resulting in a delay in the onset of laminar–turbulent transition. In the supersonic regime, the most-amplified linear waves become three-dimensional, corresponding to oblique, first-mode waves. This change in the character of dominant instabilities leads to an important change in the transition process, which is now dominated by oblique breakdown via nonlinear interactions between pairs of first-mode waves that propagate at equal but opposite angles with respect to the free stream. Because the oblique breakdown process is characterized by a strong amplification of stationary streamwise streaks, artificial excitation of such streaks may be expected to promote transition in a supersonic boundary layer. Indeed, suppression of those streaks has been shown to delay the onset of transition in prior literature. This paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite-amplitude streaks in a two-dimensional, Mach 3 adiabatic flat-plate boundary-layer flow, followed by the modal instability characteristics of the perturbed, streaky boundary-layer flow. Both parts of the investigation are performed with the plane-marching parabolized stability equations. Consistent with previous findings, the present study shows that optimally growing stationary streaks can destabilize the first-mode waves, but only when the spanwise wavelength of the instability waves is equal to or smaller than twice the streak spacing. Transition in a benign disturbance environment typically involves first-mode waves with significantly longer spanwise wavelengths, and hence, these waves are stabilized by the optimal growth streaks. Thus, as long as the amplification factors for the destabilized, short wavelength instability waves remain below the threshold level for transition, a significant net stabilization is achieved, yielding a potential transition delay that may be comparable to the length of the laminar region in the uncontrolled case.

Type
Papers
Copyright
© Cambridge University Press 2017. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Andersson, P., Henningson, D. S. & Hanifi, A. 1998 On a stabilization procedure for the parabolic stability equations. J. Engng Maths 33, 311332.CrossRefGoogle Scholar
Bagheri, S. & Hanifi, A. 2007 The stabilizing effect of streaks on Tollmien–Schlichting and oblique waves: a parametric study. Phys. Fluids 19, 078103.CrossRefGoogle Scholar
Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 2. The rhole of TS-waves in the transition process. J. Fluid Mech. 281, 219245.CrossRefGoogle Scholar
Broadhurst, M. & Sherwin, S. 2008 The parabolised stability equations for 3D-flows: implementation and numerical stability. Appl. Numer. Maths 58 (7), 10171029.CrossRefGoogle Scholar
Chang, C.-L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Choudhari, M., Li, F., Chang, C.-L., Norris, A. & Edwards, J.2013 Wake instabilities behind discrete roughness elements in high speed boundary layers. AIAA Paper 2013-0081.CrossRefGoogle Scholar
Choudhari, M., Li, F. & Edwards, J.2009 Stability analysis of roughness array wake in a high-speed boundary layer. AIAA Paper 2009-0170.CrossRefGoogle Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids 14 (8), L57L60.CrossRefGoogle Scholar
De Tullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.CrossRefGoogle Scholar
Fasel, H., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown. In Transition and Turbulent Compressible Flows (ed. Kral, L. D. & Zang, T. A.), ASME-FED, vol. 151, pp. 7792.Google Scholar
Fransson, J. H., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501.CrossRefGoogle ScholarPubMed
Haj-Hariri, H. 1994 Characteristics analysis of the parabolized stability equations. Stud. Appl. Maths 92, 4153.CrossRefGoogle Scholar
Hermanns, M. & Hernández, J. A. 2008 Stable high-order finite-difference methods based on non-uniform grid point distributions. Intl J. Numer. Meth. Fluids 56, 233255.CrossRefGoogle Scholar
Holloway, P. F. & Sterrett, J. R.1964 Effect of controlled surface roughness on boundary-layer transition and heat transfer at Mach number of 4.8 and 6.0. NASA TR-D-2054.CrossRefGoogle Scholar
Klebanoff, P. S. 1971 Effect of free-stream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 1323.Google Scholar
Laible, A. C. & Fasel, H. F. 2016 Continuously forced transient growth in oblique breakdown for supersonic boundary layers. J. Fluid Mech. 804, 323350.CrossRefGoogle Scholar
Leib, S. J. & Lee, S. S. 1995 Nonlinear evolution of a pair of oblique instability waves in a supersonic boundary layer. J. Fluid Mech. 282, 339371.CrossRefGoogle Scholar
Li, F., Choudhari, M., Chang, C. L., Kimmel, R., Adamczak, D. & Smith, M. 2015 Transition analysis for the ascent phase of HIFiRE-1 flight experiment. J. Spacecr. Rockets 52 (5), 12831293.CrossRefGoogle Scholar
Li, F. & Malik, M. R. 1994 Mathematical nature of parabolized stability equations. In Laminar-Turbulent Transition (ed. Kobayashi, R.), pp. 205212. Springer.Google Scholar
Li, F. & Malik, M. R. 1996 On the nature of the PSE approximation. Theor. Comput. Fluid Dyn. 8, 253273.CrossRefGoogle Scholar
Li, F. & Malik, M. R. 1997 Spectral analysis of parabolized stability equations. Comput. Fluids 26 (3), 279297.CrossRefGoogle Scholar
Mack, L. M.1969 Boundary layer stability theory. Tech. Rep. 900-277. Jet Propulsion Lab., Pasadena, CA.Google Scholar
Mack, L. M. 1984 Boundary layer linear stability theory. In AGARD–R–709 Special Course on Stability and Transition of Laminar Flow, pp. 3.1–3.81. North Atlantic Treaty Organization.Google Scholar
Malik, M. R., Li, F., Choudhari, M. M. & Chang, C.-L. 1999 Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J. Fluid Mech. 399, 85115.CrossRefGoogle Scholar
Mayer, C. S. J., Fasel, H. F., Choudhari, M. & Chang, C.-L. 2014 Transition onset predictions for oblique breakdown in a Mach 3 boundary layer. AIAA J. 52 (4), 882885.CrossRefGoogle Scholar
Mayer, C. S. J., Laible, A. C. & Fasel, H. F. 2011a Numerical investigation of wave packets in a Mach 3.5 cone boundary layer. J. Fluid Mech. 49 (1), 6787.Google Scholar
Mayer, C. S. J., Von Terzi, D. A. & Fasel, H. F. 2011b Direct numberical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.CrossRefGoogle Scholar
Paredes, P.2014 Advances in global instability computations: from incompressible to hypersonic flow. PhD thesis, Universidad Politécnica de Madrid.Google Scholar
Paredes, P., Choudhari, M. M. & Li, F.2016a Nonlinear transient growth and boundary layer transition. AIAA Paper 2016-3956.CrossRefGoogle Scholar
Paredes, P., Choudhari, M. M. & Li, F.2016b Transition delay in hypersonic boundary layers via optimal perturbations. NASA/TM-2916-219210.Google Scholar
Paredes, P., Choudhari, M. M. & Li, F. 2016c Transition due to streamwise streaks in a supersonic flat plate boundary layer. Phys. Rev. Fluids 1 (8), 083601.CrossRefGoogle Scholar
Paredes, P., Choudhari, M. M. & Li, F.2017 Transient growth and streak instabilities on a hypersonic blunt body. AIAA Paper 2017-0066.CrossRefGoogle Scholar
Paredes, P., Choudhari, M. M., Li, F. & Chang, C.-L. 2016d Optimal growth in hypersonic boundary layers. AIAA J. 54 (10), 30503061.CrossRefGoogle Scholar
Paredes, P., Hanifi, A., Theofilis, V. & Henningson, D. 2015 The nonlinear PSE-3D concept for transition prediction in flows with a single slowly-varying spatial direction. Procedia IUTAM 14C, 3544.Google Scholar
Paredes, P., Hermanns, M., Le Clainche, S. & Theofilis, V. 2013 Order 104 speedup in global linear instability analysis using matrix formation. Comput. Meth. Appl. Mech. Engng 253, 287304.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary Layer Theory. McGraw-Hill.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Shahinfar, S., Sattarzadeh, S. S., Fransson, J. H. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109, 074501.CrossRefGoogle ScholarPubMed
Tumin, A. & Reshotko, E. 2003 Optimal disturbances in compressible boundary layers. AIAA J. 41, 23572363.CrossRefGoogle Scholar