Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T17:05:40.287Z Has data issue: false hasContentIssue false

Instability of swirl in low-Prandtl-number thermal convection

Published online by Cambridge University Press:  21 April 2006

Josep M. Massaguer
Affiliation:
E.T.S.E. Camins, Canals i Ports and Facultat d'Informatica, Universitat Politecnica de Catalunya, Jorge Girona 31, Barcelona 08034, Spain
Isabel Mercader
Affiliation:
E.T.S.E. Camins, Canals i Ports and Facultat d'Informatica, Universitat Politecnica de Catalunya, Jorge Girona 31, Barcelona 08034, Spain

Abstract

In the present paper we examine low-Prandtl-number thermal convection using a highly truncated modal approach. For the horizontal structure we assume a hexagonal planform as in Toomre Gough & Spiegel (1977) but including a vertical vorticity mode. The system develops a non-zero vertical vorticity component through a finite-amplitude instability. Following this, the system displays a Hopf bifurcation giving rise to periodic oscillations. The mechanism for this instability is associated with the growth of swirl in the azimuthal direction. We have found three different types of periodic solutions, possibly associated with subharmonic bifurcations, and their structure has been examined.

A large part of the present work is devoted to exploring the cases of mercury and liquid helium - or air - as the best-known examples of low and intermediate-Prandtl-number fluids. Results for mercury are quite satisfactory as far as frequencies and fluxes are concerned and they show reasonable agreement with experimental measurements at mildly supercritical Rayleigh values. On the other hand, for liquid helium or air agreement is poor.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. & Behringer, R. P. 1978 Phys. Rev. Lett. 40, 712.
Baker, L. & Spiegel, E. A. 1975 J. Atmos. Sci. 82, 1909.
Behringer, R. P. & Ahlers, G. 1982 J. Fluid. Mech. 125, 219.
Busse, F. H. 1972 J. Fluid Mech. 52, 97.
Busse, F. H. 1978 Rep. Prog. Phys. 41, 1929.
Clever, R. M. & Busse, F. H. 1974 J. Fluid Mech. 65, 625.
Coles, D. 1965 J. Fluid Mech. 21, 385.
Cross, M. C. 1982 Phys. Rev. 25, 1065.
Fauve, S., Laroche, C., Libchaber, A. & Perrin, B. 1984a Phys. Rev. 52, 1774.
Fauve, S., Laroche, C., Libchaber, A. & Perrin, B. 1984b In Cellular Structures in Instabilities. (ed. J. E. Wesfreid and S. Zaleski). Lecture Notes in Physics, vol. 210, pp. 278284. Springer.
Gollub, J. P. 1980 In Systems far from Equilibrium (ed. L. Garrido). Lecture Notes in Physics, vol. 132, pp. 162180. Springer.
Gough, D. O., Spiegel, E. A. & Toomre, J. 1975 J. Fluid Mech. 68, 695.
Huppert, H. E. & Moore, D. R. 1976 J. Fluid Mech. 78, 821.
Jones, C. A. & Moore, D. R. 1979 Geophys. Astrophys. Fluid Dyn. 11, 245.
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 J. Fluid Mech. 73, 353.
Krishnamurti, R. 1973 J. Fluid Mech. 60, 285.
Leonard, A. 1985 Ann. Rev. Fluid Mech. 17, 523.
Lipps, F. B. 1976 J. Fluid Mech. 75, 113.
Lopez, J. M. & Murphy, J. O. 1984 Aust. J. Phys. 37, 531.
Malkus, W. & Veronis, G. 1958 J. Fluid Mech. 4, 225.
Marcus, P. S. 1981 J. Fluid Mech. 103, 241.
Massaguer, J. M. & Mercader, I. 1984 In Cellular Structures in Instabilities (ed. J. E. Wesfreid and S. Zaleski). Lecture Notes in Physics, vol. 210, pp. 270277. Springer.
Massaguer, J. M., Mercader, I. & Blazquez, S. 1987 In Advances in Turbulence (ed. G. Comte-Bellot & J. Mathieu), pp. 4953. Springer.
McLaughlin, J. B. & Orzag, S. A. 1982 J. Fluid Mech. 122, 123.
Mercader, I. 1985 Convección a paqueño número de Prandtl. Thesis, University of Barcelona.
Mercader, I. & Massaguer, J. M. 1983 In Proc. IV Asamblea Nacional de Astronomia y Astrofisica, vol. 1, p. 455.
Mitchell, W. T. & Quinn, J. A. 1966 AIChE J. 12, 1116.
Murphy, J. O. & Lopez, J. M. 1984 Aust. J. Phys. 37, 179.
Murphy, J. O. & Lopez, J. M. 1985 Aust. J. Phys. 38, 41.
Murphy, J. O. & Yannios, N. 1985 Proc. Astron. Soc. Aust. 6, 216.
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 27.
Rossby, H. T. 1969 J. Fluid Mech. 36, 309.
Schlüter, A., Lortz, D. & Busse, F. H. 1965 J. Fluid Mech. 23, 129.
Siggia, E. D. & Zippelius, A. 1981 Phys. Rev. Lett. 47, 835
Sulem, P. L., Sulem, C. & Tual, O. 1985 Prog. Astron. Aeron. 100, 125.
Toomre, J., Gough, D. O. & Spiegel, E. A. 1977 J. Fluid Mech. 79, 1.
Toomre, J., Gough, D. O. & Spiegel, E. A. 1982 J. Fluid Mech. 125, 99.
Telionis, D. P. 1981 Unsteady Viscous Flows, p. 53. Springer.
Van der Borght, R. 1976 Aust. J. Phys. 29, 305.
Walden, R. W. 1983 Phys. Rev. A 27, 1255.
Widnall, S. E. 1975 Ann. Rev. Fluid Mech. 7, 141.