Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-14T11:41:53.122Z Has data issue: false hasContentIssue false

Instability and transition control by steady local blowing/suction in a hypersonic boundary layer

Published online by Cambridge University Press:  14 August 2024

Guo-Hui Zhuang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Zhen-Hua Wan*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Nan-Sheng Liu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
De-Jun Sun*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
*
Email addresses for correspondence: wanzh@ustc.edu.cn, dsun@ustc.edu.cn
Email addresses for correspondence: wanzh@ustc.edu.cn, dsun@ustc.edu.cn

Abstract

The efficacy of steady large-amplitude blowing/suction on instability and transition control for a hypersonic flat plate boundary layer with Mach number 5.86 is investigated systematically. The influence of the blowing/suction flux and amplitude on instability is examined through direct numerical simulation and resolvent analysis. When a relatively small flux is used, the two-dimensional instability critical frequency that distinguishes the promotion/suppression mode effect closely aligns with the synchronisation frequency. For the oblique wave, as the spanwise wavenumber increases, the suppression effects would become weaker and the mode suppression bandwidth diminishes/increases in general in the blowing/suction control. Increasing the blowing/suction flux can effectively broaden the frequency bandwidth of disturbance suppression. The influence of amplitude on disturbance suppression is weak in a scenario of constant flux. To gain a deeper insight into disturbance suppression mechanism, momentum potential theory (MPT) and kinetic energy budget analysis are further employed in analysing disturbance evolution with and without control. When the disturbance is suppressed, the blowing induces the transport of certain acoustic components along the compression wave out of the boundary layer, whereas the suction does not. The velocity fluctuations are derived from the momentum fluctuations of the MPT. Compared with the momentum fluctuations, the evolutions indicated by each component's velocity fluctuations greatly facilitate the investigations of the acoustic nature of the second mode. The rapid variation of disturbance amplitude near the blowing is caused by the oscillations of the acoustic component and phase speed differences between vortical and thermal components. Kinetic energy budget analysis is performed to address the non-parallel effect of the boundary layer introduced by blowing/suction, which tends to suppress disturbances near the blowing. Moreover, viscous effects leading to energy dissipation are identified to be stronger in regions where the boundary layer is rapidly thickening. Finally, it is demonstrated that a flat plate boundary layer transition triggered by a random disturbance can be delayed by a blowing/suction combination control. The resolvent analysis further demonstrates that disturbances with frequencies that dominate the early transition stage are dampened in the controlled base flow.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bountin, D., Chimitov, T., Maslov, A., Novikov, A., Egorov, I., Fedorov, A. & Utyuzhnikov, S. 2013 Stabilization of a hypersonic boundary layer using a wavy surface. AIAA J. 51 (5), 12031210.CrossRefGoogle Scholar
Bountin, D., Shiplyuk, A. & Maslov, A. 2008 Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. J. Fluid Mech. 611, 427442.CrossRefGoogle Scholar
Brès, G.A., Inkman, M., Colonius, T. & Fedorov, A.V. 2013 Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer. J. Fluid Mech. 726, 312337.CrossRefGoogle Scholar
Bugeat, B., Chassaing, J.C., Robinet, J.-C. & Sagaut, P. 2019 3D global optimal forcing and response of the supersonic boundary layer. J. Comput. Phys. 398, 108888.CrossRefGoogle Scholar
Casper, K., Beresh, S., Henfling, J., Spillers, R., Pruett, B. & Schneider, S. 2009 Hypersonic wind-tunnel measurements of boundary-layer pressure fluctuations. AIAA Paper 4054.CrossRefGoogle Scholar
Chen, S. & Lee, C.B. 2021 Effect of cavity on hypersonic flat-plate boundary layer instability. Phys. Fluids 33 (8), 084109.CrossRefGoogle Scholar
Chen, X., Zhu, Y.D. & Lee, C.B. 2017 Interactions between second mode and low-frequency waves in a hypersonic boundary layer. J. Fluid Mech. 820, 693735.CrossRefGoogle Scholar
Chu, B.T. 1965 On the energy transfer to small disturbances in fluid flow (part I). Acta Mech. 1 (3), 215234.CrossRefGoogle Scholar
Daubechies, I., Lu, J.F. & Wu, H.T. 2011 Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30 (2), 243261.CrossRefGoogle Scholar
Doak, P.E. 1989 Momentum potential theory of energy flux carried by momentum fluctuations. J. Sound Vib. 131 (1), 6790.CrossRefGoogle Scholar
Dong, M. & Li, C. 2021 Effect of two-dimensional short rectangular indentations on hypersonic boundary-layer transition. AIAA J. 59 (7), 23682381.CrossRefGoogle Scholar
Dong, M. & Zhao, L. 2021 An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. J. Fluid Mech. 913, A22.CrossRefGoogle Scholar
Duan, L., Wang, X.W. & Zhong, X.L. 2013 Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness. AIAA J. 51 (1), 266270.CrossRefGoogle Scholar
Egorov, I., Fedorov, A., Novikov, A. & Soudakov, V. 2007 Direct numerical simulation of supersonic boundary-layer stabilization by porous coatings. AIAA Paper 948.CrossRefGoogle Scholar
Fan, Y.T., Atzori, M., Vinuesa, R., Gatti, D., Schlatter, P. & Li, W.P. 2022 Decomposition of the mean friction drag on an NACA4412 airfoil under uniform blowing/suction. J. Fluid Mech. 932, A31.CrossRefGoogle Scholar
Fasel, H. & Konzelmann, U. 1990 Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311347.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fedorov, A., Kozlov, V., Shiplyuk, A., Maslov, A. & Malmuth, N. 2006 Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44 (8), 18661871.CrossRefGoogle Scholar
Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E. & Malmuth, N. 2003 Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating. J. Fluid Mech. 479, 99124.CrossRefGoogle Scholar
Fedorov, A., Soudakov, V., Egorov, I., Sidorenko, A., Gromyko, Y., Bountin, D., Polivanov, P. & Maslov, A. 2015 High-speed boundary-layer stability on a cone with localized wall heating or cooling. AIAA J. 53 (9), 25122524.CrossRefGoogle Scholar
Fedorov, A. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49 (8), 16471657.CrossRefGoogle Scholar
George, K.J. & Sujith, R.I. 2011 On Chu's disturbance energy. J. Sound Vib. 330 (22), 52805291.CrossRefGoogle Scholar
Guo, P., Hao, J. & Wen, C.-Y. 2023 Interaction and breakdown induced by multiple optimal disturbances in hypersonic boundary layer. J. Fluid Mech. 974, A50.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2018 Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances. J. Fluid Mech. 847, R3.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2021 Flow control using steady blowing and suction strips in a Mach 6 boundary layer on a flared cone. AIAA Paper 2021-1206.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2022 Flow control using steady blowing and suction strips in a Mach 6 boundary layer on a flared cone: ‘natural’ transition. AIAA Aviation 2022 Forum 3339.CrossRefGoogle Scholar
Holloway, P.F. & Sterrett, J.R. 1964 Effect of controlled surface roughness on boundary-layer transition and heat transfer at Mach numbers of 4.8 and 6.0. NASA Tech. Rep. TN-D-2054.CrossRefGoogle Scholar
Jahanbakhshi, R. & Zaki, T.A. 2021 Optimal heat flux for delaying transition to turbulence in a high-speed boundary layer. J. Fluid Mech. 916, A46.CrossRefGoogle Scholar
Kneer, S., Guo, Z.F. & Kloker, M.J. 2022 Control of laminar breakdown in a supersonic boundary layer employing streaks. J. Fluid Mech. 932, A53.CrossRefGoogle Scholar
Knisely, C.P. & Zhong, X.L. 2019 Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. II. Direct numerical simulation. Phys. Fluids 31 (2), 024104.CrossRefGoogle Scholar
Kumar, C. & Prakash, A. 2022 Effect of mass injection on secondary instability of hypersonic boundary layer over a blunt cone. Phys. Fluids 34 (6), 064109.CrossRefGoogle Scholar
Laurence, S.J., Wagner, A. & Hannemann, K. 2016 Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization. J. Fluid Mech. 797, 471503.CrossRefGoogle Scholar
Leyva, I., Jewell, J., Laurence, S., Hornung, H. & Shepherd, J. 2009 a On the impact of injection schemes on transition in hypersonic boundary layers. AIAA Paper 2009-7204.CrossRefGoogle Scholar
Leyva, I., Laurence, S., Beierholm, A., Hornung, H., Wagnild, R. & Candler, G. 2009 b Transition delay in hypervelocity boundary layers by means of CO$_2$/acoustic instability interactions. AIAA Paper. 2009-1287.CrossRefGoogle Scholar
Li, J.C. & Zhang, M.Q. 2022 Reinforcement-learning-based control of confined cylinder wakes with stability analyses. J. Fluid Mech. 932, A44.CrossRefGoogle Scholar
Lukashevich, S.V., Maslov, A.A., Shiplyuk, A.N., Fedorov, A.V. & Soudakov, V.G. 2012 Stabilization of high-speed boundary layer using porous coatings of various thicknesses. AIAA J. 50 (9), 18971904.CrossRefGoogle Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. AGARD Rep. 709. AGARD.Google Scholar
Mack, L.M. 1990 On the inviscid acoustic-mode instability of supersonic shear flows. Part 1: two-dimensional waves. Theor. Comput. Fluid Dyn. 2 (2), 97123.CrossRefGoogle Scholar
Malik, M.R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.CrossRefGoogle Scholar
Marxen, O., Iaccarino, G. & Shaqfeh, E.S.G. 2010 Disturbance evolution in a Mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock. J. Fluid Mech. 648, 435469.CrossRefGoogle Scholar
Maslov, A., Shiplyuk, A., Bountin, D., Sidorenko, A., Knauss, H., Fedorov, A. & Malmuth, N. 2008 Experimental study of transition in hypersonic boundary layer on ultrasonically absorptive coating with random porosity. AIAA Paper 587.CrossRefGoogle Scholar
Maslov, A., Shiplyuk, A., Sidorenko, A., Polivanov, P., Fedorov, A., Kozlov, V. & Malmuth, N. 2006 Hypersonic laminar flow control using a porous coating of random microstructure. AIAA Paper 1112.CrossRefGoogle Scholar
Miró Miró, F., Dehairs, P., Pinna, F., Gkolia, M., Masutti, D., Regert, T. & Chazot, O. 2019 Effect of wall blowing on hypersonic boundary-layer transition. AIAA J. 57 (4), 15671578.CrossRefGoogle Scholar
Morkovin, M.V. 1969 On the many faces of transition. In Viscous Drag Reduction (ed. C.S. Wells), pp. 1–31. Springer.CrossRefGoogle Scholar
Nibourel, P., Leclercq, C., Demourant, F., Garnier, E. & Sipp, D. 2023 Reactive control of second Mack mode in a supersonic boundary layer with free-stream velocity/density variations. J. Fluid Mech. 954, A20.CrossRefGoogle Scholar
Poulain, A., Content, C., Rigas, G., Garnier, E. & Sipp, D. 2024 Adjoint-based linear sensitivity of a supersonic boundary layer to steady wall blowing–suction/heating–cooling. J. Fluid Mech. 978, A16.CrossRefGoogle Scholar
Poulain, A., Content, C., Sipp, D., Rigas, G. & Garnier, E. 2023 a Broadcast: a high-order compressible CFD toolbox for stability and sensitivity using algorithmic differentiation. Comput. Phys. Commun. 283, 108557.CrossRefGoogle Scholar
Poulain, A., Content, C., Sipp, D., Rigas, G. & Garnier, E. 2023 b Optimal location for steady wall blowing or heating actuators in a hypersonic boundary layer. In AERO 2023 – 57th 3AF International Conference on Applied Aerodynamics.Google Scholar
Prokein, D. & von Wolfersdorf, J. 2019 Numerical simulation of turbulent boundary layers with foreign gas transpiration using OpenFOAM. Acta Astronaut. 158, 253263.CrossRefGoogle Scholar
Rasheed, A., Hornung, H.G., Fedorov, A.V. & Malmuth, N.D. 2002 Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA J. 40 (3), 481489.CrossRefGoogle Scholar
Sawaya, J., Sassanis, V., Yassir, S., Sescu, A. & Visbal, M. 2018 Assessment of the impact of two-dimensional wall deformation shape on high-speed boundary-layer disturbances. AIAA J. 56 (12), 47874800.CrossRefGoogle Scholar
Si, W.F., Huang, G.L., Zhu, Y.D., Chen, S.Y. & Lee, C.B. 2019 Hypersonic aerodynamic heating over a flared cone with wavy wall. Phys. Fluids 31 (5), 051702.CrossRefGoogle Scholar
Stetson, K.F. & Kimmel, R.L. 1992 Example of second-mode instability dominance at a Mach number of 5.2. AIAA J. 30 (12), 29742976.CrossRefGoogle Scholar
Tian, X.D., Liu, T., Wang, T.T., Zhu, J. & Wen, C.Y. 2022 Double-layer acoustic metasurface for the suppression of the Mack second mode in hypersonic boundary-layer flow. Phys. Fluids 34 (7), 074105.CrossRefGoogle Scholar
Tian, X.D. & Wen, C. 2021 Growth mechanisms of second-mode instability in hypersonic boundary layers. J. Fluid Mech. 908, R4.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2019 Interactions between vortical, acoustic and thermal components during hypersonic transition. J. Fluid Mech. 868, 611647.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2021 Instabilities and transition in cooled wall hypersonic boundary layers. J. Fluid Mech. 915, A26.CrossRefGoogle Scholar
Wagner, A., Kuhn, M., Schramm, J.M. & Hannemann, K. 2013 Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon–carbon material with random microstructure. Exp. Fluids 54, 110.CrossRefGoogle Scholar
Wang, X.W. & Lallande, D. 2020 Hypersonic boundary-layer stabilization using steady blowing and suction: effect of forcing location. AIAA Paper 2059.CrossRefGoogle Scholar
Wang, X.W. & Zhong, X.L. 2009 Effect of wall perturbations on the receptivity of a hypersonic boundary layer. Phys. Fluids 21 (4), 044101.CrossRefGoogle Scholar
Ye, C.C., Zhang, P.J.Y., Wan, Z.H., Sun, D.J. & Lu, X.Y. 2020 Numerical investigation of the bevelled effects on shock structure and screech noise in planar supersonic jets. Phys. Fluids 32 (8), 086103.CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2017 Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech. 822, 530.CrossRefGoogle Scholar
Zhao, L., Dong, M. & Yang, Y.G. 2019 a Harmonic linearized Navier–Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Phys. Fluids 31 (3), 034108.CrossRefGoogle Scholar
Zhao, R., Liu, T., Wen, C.Y., Zhu, J. & Cheng, L. 2018 a Theoretical modeling and optimization of porous coating for hypersonic laminar flow control. AIAA J. 56 (8), 29422946.CrossRefGoogle Scholar
Zhao, R., Liu, T., Wen, C.Y., Zhu, J. & Cheng, L. 2019 b Impedance-near-zero acoustic metasurface for hypersonic boundary-layer flow stabilization. Phys. Rev. Appl. 11 (4), 044015.CrossRefGoogle Scholar
Zhao, R., Wen, C.Y., Tian, X.D., Long, T.H. & Yuan, W. 2018 b Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer. Intl J. Heat Mass Transfer 121, 986998.CrossRefGoogle Scholar
Zhuang, G.H., Wan, Z.H., Ye, C.C., Luo, Z.B., Liu, N.S., Sun, D.J. & Lu, X.Y. 2023 Active transition control by synthetic jets in a hypersonic boundary layer. Phys. Fluids 35 (3), 034112.CrossRefGoogle Scholar