Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-13T16:36:48.754Z Has data issue: false hasContentIssue false

Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid

Published online by Cambridge University Press:  14 December 2007

M. HAMEED
Affiliation:
Division of Mathematics and Computer Science, Unversity of South Carolina Upstate, Spartanburg, SC 29303, USA
M. SIEGEL
Affiliation:
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, NJIT, Newark, NJ 07102, USA
Y.-N. YOUNG
Affiliation:
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, NJIT, Newark, NJ 07102, USA
J. LI
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
M. R. BOOTY
Affiliation:
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, NJIT, Newark, NJ 07102, USA
D. T. PAPAGEORGIOU
Affiliation:
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, NJIT, Newark, NJ 07102, USA

Abstract

The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit.

The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure.

The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acrivos, A. & Lo, T. S. 1978 Deformation and breakup of a single slender drop in an extensional flow. J. Fluid Mech. 86, 641672.CrossRefGoogle Scholar
Ambravaneswaran, B. & Basaran, O. A. 1999 Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Phys. Fluids 11 (5), 9971015.CrossRefGoogle Scholar
Anna, S. L. & Mayer, H. C. 2006 Microscale tipstreaming in a microfluidic flow focusing device. Phys. Fluids 18, 121512.CrossRefGoogle Scholar
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 18421848.CrossRefGoogle Scholar
Belytschko, T., Kennedy, J. M. & Schoeberle, D. F. 1980 Quasi-Eulerian finite element formulation for fluid–structure interaction. Trans. ASME J. Press. Vessel Technol. 102, 6269.CrossRefGoogle Scholar
Booty, M. R. & Siegel, M. 2005 Steady deformation and tip-streaming of a slender bubble with surfactant in extensional flow. J. Fluid Mech. 544, 243275.CrossRefGoogle Scholar
Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number 0.0304... Phys. Fluids 8 (11), 28272836.CrossRefGoogle Scholar
Buckmaster, J. D. 1972 Pointed bubbles in slow viscous flow. J. Fluid Mech. 55, 385400.CrossRefGoogle Scholar
Burkholder, H. C. & Berg, J. C. 1974 Effect of mass transfer on laminar jet breakup. Part I: liquid jets in gases. Part II: liquid jets in liquids. AIChE J. 20, 863880.CrossRefGoogle Scholar
Chang, C.-H. & Franses, E. I. 1995 Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data and mechanisms. Colloids Surfaces A 100, 145.CrossRefGoogle Scholar
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14 (4), 13641376.CrossRefGoogle Scholar
De Bruijn, R. A. 1993 Tipstreaming of drops in simple shear flows. Chem. Engng. Sci. 48, 277284.CrossRefGoogle Scholar
Donea, J., Giuliani, S. & Halleux, J. P. 1982 An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid structure interaction. Comput. Meth. Appl. Mech. Engng 33, 689723.CrossRefGoogle Scholar
Donea, J. & Huerta, A. 2003 Finite Element Methods for Flow Problems. Wiley.CrossRefGoogle Scholar
Doshi, P., Cohen, I., Zhang, W. W., Siegel, M., Howell, P., Basaran, O. A. & Nagel, S. R. 2003 Persistence of memory in drop breakup: the breakdown of universality. Science 302, 11851188.CrossRefGoogle ScholarPubMed
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 34583464.CrossRefGoogle ScholarPubMed
Eggers, J. 1995 Theory of drop formation. Phys. Fluids 7, 941953.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.CrossRefGoogle Scholar
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.CrossRefGoogle Scholar
Handelsman, R. A. & Keller, J. B. 1967 Axially symmetric potential flow around a slender body. J. Fluid Mech. 28, 131147.CrossRefGoogle Scholar
Hansen, S., Peters, G. W. M. & Meijer, H. E. H. 1999 The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J. Fluid Mech. 382, 331349.CrossRefGoogle Scholar
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Hirt, C. W., Amsden, A. A. & Cook, J. L. 1974 An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227253 (Reprinted in J. Comput. Phys. 135(2), 203–216, 1997).CrossRefGoogle Scholar
Janssen, J. J. M., Boon, A. & Agterof, W. G. M. 1994 Influence of dynamic interfacial properties on droplet breakup in simple shear flow. AIChE. J. 40, 19291939.CrossRefGoogle Scholar
Janssen, J. J. M., Boon, A. & Agterof, W. G. M. 1997 Influence of dynamic interfacial properties on droplet breakup in plane hyperbolic flow. AIChE. J. 43, 14361447.CrossRefGoogle Scholar
Jin, F., Gupta, N. R. & Stebe, K. J. 2006 The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant. Phys. Fluids 18, 022103.CrossRefGoogle Scholar
Kwak, S. & Pozrikidis, C. 2001 Effect of surfactants on the instability of a liquid thread or annular layer. Part I. quiescent fluids. Int. J. Multiphase Flow 27, 137.CrossRefGoogle Scholar
Li, J. 2006 The effect of an insoluble surfactant on the skin friction of a bubble. Eur. J. Mech. B Fluid 25, 5973.CrossRefGoogle Scholar
Li, J., Hesse, M., Ziegler, J. & Woods, A. W. 2005 An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water. J. Comput. Phys. 208, 289314.CrossRefGoogle Scholar
Liao, Y.-C., Franses, E. I. & Basaran, O. A. 2006 Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids 18 (2), 022101.CrossRefGoogle Scholar
Lister, J. R. & Stone, H. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10 (11), 27582764.CrossRefGoogle Scholar
McGough, P. T. & Basaran, O. A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96, 054502–1–054502–4.CrossRefGoogle ScholarPubMed
Milliken, W. J., Stone, H. A. & Leal, L. G. 1993 The effect of surfactant on the transient motion of Newtonian drops. Phys. Fluids 5 (1), 6979.CrossRefGoogle Scholar
Notz, P. K., Chen, A. U. & Basaran, O. A. 2001 Satellite drops: unexpected dynamnics and change of scaling during pinch-off. Phys. Fluids 13 (3), 549552.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7 (7), 15291544.CrossRefGoogle Scholar
Pawar, Y. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8 (7), 17381751.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347384.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 4.Google Scholar
Rayleigh, Lord 1892 On the stability of a cylinder of viscous liquid under capillary force. Phil. Mag. 34, 145.CrossRefGoogle Scholar
Rothert, A., Richter, R. & Rehberg, I. 2001 Transition from symmetric to axisymmetric scaling function before drop pinch-off. Phys. Rev. Lett. 87, 0845501.CrossRefGoogle Scholar
Ryskin, G. & Leal, L. G. 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique. J. Fluid Mech. 148, 117.CrossRefGoogle Scholar
Sierou, A. & Lister, J. R. 2003 Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech. 497, 381403.CrossRefGoogle Scholar
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Suryo, R., Doshi, P. & Basaran, O. A. 2004 Non-self-similar, linear dyanmics during pinch-off of a hollow annular jet. Phys. Fluids 16, 4177.CrossRefGoogle Scholar
Taylor, G. I. 1964 Conical free surfaces and fluid interfaces. In Proc. 11th Intl. Cong. Theor. Appl. Mech. (Munich 1964), pp. 790796. Springer.Google Scholar
Timmermans, M.-L. E. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.CrossRefGoogle Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Wang, Y., Papageorgiou, D. & Maldarelli, C. 1999 Increased mobility of a surfactant-retarded bubble at high bulk concentrations. J. Fluid Mech. 390, 251270.CrossRefGoogle Scholar
Whitaker, S. 1976 Studies of the drop-weight method for surfactant solutions: III. Drop stability, the effect of surfactants on the stability of a column of liquid. J. Colloid Interface Sci. 54, 231248.CrossRefGoogle Scholar
Wilkes, E. D., Phillips, S. D. & Basaran, O. A. 1999 Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11 (12), 35773598.CrossRefGoogle Scholar
Wong, H., Rumschitzki, D. & Maldarelli, C. 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8 (11), 32023204.CrossRefGoogle Scholar
Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for capillary pinch-off in fluids of differing viscosity. Phys. Rev. Lett. 83 (6), 11511154.CrossRefGoogle Scholar
Zhang, X. & Basaran, O. A. 1995 An experimental study of dynamics of drop formation. Phys. Fluids 7 (6), 11841203.CrossRefGoogle Scholar