Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T11:58:54.442Z Has data issue: false hasContentIssue false

Hydroacoustic analysis of a marine propeller using large-eddy simulation and acoustic analogy

Published online by Cambridge University Press:  31 August 2022

Antonio Posa*
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, Roma 00128, Italy
Riccardo Broglia
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, Roma 00128, Italy
Mario Felli
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, Roma 00128, Italy
Marta Cianferra
Affiliation:
Department of Engineering and Architecture, Università di Trieste, Via Alfonso Valerio, 6/1, Trieste 34127, Italy
Vincenzo Armenio
Affiliation:
Department of Engineering and Architecture, Università di Trieste, Via Alfonso Valerio, 6/1, Trieste 34127, Italy
*
Email address for correspondence: antonio.posa@inm.cnr.it

Abstract

The acoustic analogy is adopted to characterise the signature of a seven-bladed submarine propeller, relying on a high-fidelity large-eddy simulation, performed on a computational grid consisting of 840 million points. Results demonstrate that the nonlinear terms of the Ffowcs-Williams and Hawkings equation quickly become dominant moving away from the propeller along the direction of its wake development. While the linear terms experience a decay moving downstream, the nonlinear terms grow in the near wake, as a result of the development of wake instability. In particular, this growth affects frequencies lower than the blade frequency. Therefore, the acoustic signature of the propeller is mainly tonal in the near field only, due to the thickness and loading components of noise from the surface of the propeller and the periodic perturbation caused by its tip vortices. They develop instability at a faster rate, compared with the hub vortex, triggering the process of energy cascade towards higher frequencies and contributing in this way to broadband noise.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagheri, M.R., Seif, M.S., Mehdigholi, H. & Yaakob, O. 2017 Analysis of noise behaviour for marine propellers under cavitating and non-cavitating conditions. Ships Offshore Struct. 12 (1), 18.CrossRefGoogle Scholar
Balaras, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33 (3), 375404.CrossRefGoogle Scholar
Bensow, R. & Liefvendahl, M. 2016 An acoustic analogy and scale-resolving flow simulation methodology for the prediction of propeller radiated noise. In Proceedings of the 31st Symposium on Naval Hydrodynamics. US Office of Naval Research.Google Scholar
Brentner, K.S. & Farassat, F. 1998 Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA J. 36 (8), 13791386.CrossRefGoogle Scholar
Casalino, D. 2003 An advanced time approach for acoustic analogy predictions. J. Sound Vib. 261 (4), 583612.CrossRefGoogle Scholar
Chou, E., Southall, B.L., Robards, M. & Rosenbaum, H.C. 2021 International policy, recommendations, actions and mitigation efforts of anthropogenic underwater noise. Ocean Coast. Manage. 202, 105427.CrossRefGoogle Scholar
Cianferra, M. & Armenio, V. 2021 Scaling properties of the Ffowcs-Williams and Hawkings equation for complex acoustic source close to a free surface. J. Fluid Mech. 927, A2.CrossRefGoogle Scholar
Cianferra, M., Ianniello, S. & Armenio, V. 2019 a Assessment of methodologies for the solution of the Ffowcs Williams and Hawkings equation using LES of incompressible single-phase flow around a finite-size square cylinder. J. Sound Vib. 453, 124.CrossRefGoogle Scholar
Cianferra, M., Petronio, A. & Armenio, V. 2019 b Non-linear noise from a ship propeller in open sea condition. Ocean Engng 191, 106474.CrossRefGoogle Scholar
Di Francescantonio, P. 1997 A new boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202 (4), 491509.CrossRefGoogle Scholar
Di Mascio, A., Dubbioso, G., Muscari, R. & Felli, M. 2015 CFD analysis of propeller-rudder interaction. In Proceedings of The Twenty-fifth International Ocean and Polar Engineering Conference (ed. J.S. Chung, F. Vorpahl, S.Y. Hong, T. Kokkinis & A.M. Wang), ISOPE-I-15-732.Google Scholar
Ebrahimi, A., Seif, M.S. & Nouri-Borujerdi, A. 2019 Hydro-acoustic and hydrodynamic optimization of a marine propeller using genetic algorithm, boundary element method, and FW-H equations. J. Mar. Sci. Engng 7 (9), 321.CrossRefGoogle Scholar
Farassat, F. & Brentner, K.S. 1998 The acoustic analogy and the prediction of the noise of rotating blades. Theor. Comput. Fluid Dyn. 10, 155170.CrossRefGoogle Scholar
Farge, M., Schneider, K. & Kevlahan, N. 1999 Non-Gaussianity and coherent vortex simulation for two-dimensional nurbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11 (8), 21872201.CrossRefGoogle Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.CrossRefGoogle Scholar
Felli, M. & Falchi, M. 2018 A parametric survey of propeller wake instability mechanisms by detailed flow measurement and time resolved visualizations. In Proceedings of the 32nd Symposium on Naval Hydrodynamics. US Office of Naval Research.Google Scholar
Felli, M., Falchi, M. & Dubbioso, G. 2015 Experimental approaches for the diagnostics of hydroacoustic problems in naval propulsion. Ocean Engng 106, 119.CrossRefGoogle Scholar
Felli, M., Falchi, M. & Pereira, F.J.A. 2010 Distance effect on the behavior of an impinging swirling jet by PIV and flow visualizations. Exp. Fluids 48 (2), 197209.CrossRefGoogle Scholar
Felli, M., Grizzi, S. & Falchi, M. 2014 A novel approach for the isolation of the sound and pseudo-sound contributions from near-field pressure fluctuation measurements: analysis of the hydroacoustic and hydrodynamic perturbation in a propeller-rudder system. Exp. Fluids 55 (1), 1651.CrossRefGoogle Scholar
Ffowcs-Williams, J.E. & Hawkings, D.L. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264 (1151), 321342.Google Scholar
Foti, D., Yang, X. & Sotiropoulos, F. 2018 Similarity of wake meandering for different wind turbine designs for different scales. J. Fluid Mech. 842, 525.CrossRefGoogle Scholar
Hunt, J.C., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program 1988, pp. 193–208. Center for Turbulence Research.Google Scholar
Ianniello, S. 2016 The Ffowcs Williams-Hawkings equation for hydroacoustic analysis of rotating blades. Part 1. The rotpole. J. Fluid Mech. 797, 345388.CrossRefGoogle Scholar
Ianniello, S. & De Bernardis, E. 2015 Farassat's formulations in marine propeller hydroacoustics. Intl J. Aeroacoust. 14 (1–2), 87103.CrossRefGoogle Scholar
Ianniello, S., Muscari, R. & Di Mascio, A. 2013 Ship underwater noise assessment by the acoustic analogy. Part 1. Nonlinear analysis of a marine propeller in a uniform flow. J. Mar. Sci. Technol. 18 (4), 547570.CrossRefGoogle Scholar
Ianniello, S., Muscari, R. & Di Mascio, A. 2014 Ship underwater noise assessment by the acoustic analogy. Part 2. Hydroacoustic analysis of a ship scaled model. J. Mar. Sci. Technol. 19 (1), 5274.CrossRefGoogle Scholar
Kang, S., Yang, X. & Sotiropoulos, F. 2014 On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J. Fluid Mech. 744, 376403.CrossRefGoogle Scholar
Karabasov, S.A., Afsar, M.Z., Hynes, T.P., Dowling, A.P., McMullan, W.A., Pokora, C.D., Page, G.J. & McGuirk, J.J. 2010 Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48 (7), 13121325.CrossRefGoogle Scholar
Keller, J., Kumar, P. & Mahesh, K. 2018 Examination of propeller sound production using large eddy simulation. Phys. Rev. Fluids 3 (6), 064601.CrossRefGoogle Scholar
Kimmerl, J., Mertes, P. & Abdel-Maksoud, M. 2021 Application of large eddy simulation to predict underwater noise of marine propulsors. Part 2. Noise generation. J. Mar. Sci. Engng 9 (7), 778.CrossRefGoogle Scholar
Lidtke, A.K., Humphrey, V.F. & Turnock, S.R. 2016 Feasibility study into a computational approach for marine propeller noise and cavitation modelling. Ocean Engng 120, 152159.CrossRefGoogle Scholar
Lidtke, A.K., Lloyd, T., Lafeber, F.H. & Bosschers, J. 2022 Predicting cavitating propeller noise in off-design conditions using scale-resolving CFD simulations. Ocean Engng 254, 111176.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Merchant, N.D. 2019 Underwater noise abatement: economic factors and policy options. Environ. Sci. Policy 92, 116123.CrossRefGoogle Scholar
Morris, P.J. & Farassat, F. 2002 Acoustic analogy and alternative theories for jet noise prediction. AIAA J. 40 (4), 671680.CrossRefGoogle Scholar
Najafi-Yazdi, A., Brès, G.A. & Mongeau, L. 2011 An acoustic analogy formulation for moving sources in uniformly moving media. Proc. R. Soc. A 467 (2125), 144165.CrossRefGoogle Scholar
Naseer, M.R., Uddin, E., Mubashar, A., Sajid, M., Ali, Z. & Akhtar, K. 2020 Numerical investigation of hydrodynamic and hydro-acoustic performance of underwater propeller operating in off-design flow conditions. J. Mar. Engng Technol. 21 (4), 224233.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Özden, M.C., Gürkan, A.Y., Özden, Y.A., Canyurt, T.G. & Korkut, E. 2016 Underwater radiated noise prediction for a submarine propeller in different flow conditions. Ocean Engng 126, 488500.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2021 Flow over a hydrofoil at incidence immersed within the wake of a propeller. Phys. Fluids 33 (12), 125108.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2022 Development of the wake shed by a system composed of a propeller and a rudder at incidence. Intl J. Heat Fluid Flow 94, 108919.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2019 a LES study of the wake features of a propeller in presence of an upstream rudder. Comput. Fluids 192, 104247.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2020 a Flow over a hydrofoil in the wake of a propeller. Comput. Fluids 213, 104714.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2020 b The wake structure of a propeller operating upstream of a hydrofoil. J. Fluid Mech. 904, A12.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2021 The wake flow downstream of a propeller-rudder system. Intl J. Heat Fluid Flow 87, 108765.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2022 The dynamics of the tip and hub vortices shed by a propeller: Eulerian and Lagrangian approaches. Comput. Fluids 236, 105313.CrossRefGoogle Scholar
Posa, A., Broglia, R., Felli, M., Falchi, M. & Balaras, E. 2019 b Characterization of the wake of a submarine propeller via large-eddy simulation. Comput. Fluids 184, 138152.CrossRefGoogle Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177195.CrossRefGoogle Scholar
Renilson, M., Leaper, R. & Boisseau, O. 2013 Hydro-acoustic noise from merchant ships - impacts and practical mitigation techniques. In Proceedings of the Third International Symposium on Marine Propulsors. (ed. J. Binns, R. Brown & N. Bose). Australian Maritime College, University of Tasmania.Google Scholar
Rossi, T. & Toivanen, J. 1999 A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (5), 17781793.CrossRefGoogle Scholar
Ruppert-Felsot, J., Farge, M. & Petitjeans, P. 2009 Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636, 427453.CrossRefGoogle Scholar
Sezen, S., Atlar, M. & Fitzsimmons, P. 2021 a Prediction of cavitating propeller underwater radiated noise using RANS and DES-based hybrid method. Ships Offshore Struct. 16 (S1), 93105.CrossRefGoogle Scholar
Sezen, S., Atlar, M., Fitzsimmons, P., Sasaki, N., Tani, G., Yilmaz, N. & Aktas, B. 2020 Numerical cavitation noise prediction of a benchmark research vessel propeller. Ocean Engng 211, 107549.CrossRefGoogle Scholar
Sezen, S., Cosgun, T., Yurtseven, A. & Atlar, M. 2021 b Numerical investigation of marine propeller underwater radiated noise using acoustic analogy. Part 1. The influence of grid resolution. Ocean Engng 220, 108448.CrossRefGoogle Scholar
Sezen, S. & Kinaci, O.K. 2019 Incompressible flow assumption in hydroacoustic predictions of marine propellers. Ocean Engng 186, 106138.CrossRefGoogle Scholar
Stark, C. & Shi, W. 2021 Hydroacoustic and hydrodynamic investigation of bio-inspired leading-edge tubercles on marine-ducted thrusters. R. Soc. Open Sci. 8, 210402.CrossRefGoogle ScholarPubMed
Tani, G., et al. 2020 Noise measurements of a cavitating propeller in different facilities: results of the round robin test programme. Ocean Engng 213, 107599.CrossRefGoogle Scholar
Vakili, S.V., Ölcer, A.I. & Ballini, F. 2020 The development of a policy framework to mitigate underwater noise pollution from commercial vessels: the role of ports. Mar. Policy 120, 104132.CrossRefGoogle Scholar
Van Kan, J. 1986 A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (3), 870891.CrossRefGoogle Scholar
Wang, J., Wang, K. & Wang, M. 2021 Computational prediction and analysis of rotor noise generation in a turbulent wake. J. Fluid Mech. 908, A19.CrossRefGoogle Scholar
Wang, L., Martin, J.E., Felli, M. & Carrica, P.M. 2020 Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Engng 206, 107304.CrossRefGoogle Scholar
Wang, M., Freund, J.B. & Lele, S.K. 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483512.CrossRefGoogle Scholar
Wang, M., Lele, S.K. & Moin, P. 1996 Computation of quadrupole noise using acoustic analogy. AIAA J. 34 (11), 22472254.CrossRefGoogle Scholar
Wu, Q., Huang, B., Wang, G., Cao, S. & Zhu, M. 2018 Numerical modelling of unsteady cavitation and induced noise around a marine propeller. Ocean Engng 160, 143155.CrossRefGoogle Scholar
Yang, J. & Balaras, E. 2006 An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215 (1), 1240.CrossRefGoogle Scholar
Yang, Q. & Wang, M. 2013 Boundary-layer noise induced by arrays of roughness elements. J. Fluid Mech. 727, 282317.CrossRefGoogle Scholar
Zhou, Z., Wang, H. & Wang, S. 2021 a Simplified permeable surface correction for frequency-domain Ffowcs Williams and Hawkings integrals. Theor. Appl. Mech. Lett. 11 (4), 100259.CrossRefGoogle Scholar
Zhou, Z., Wang, H., Wang, S. & He, G. 2021 b Lighthill stress flux model for Ffowcs Williams–Hawkings integrals in frequency domain. AIAA J. 59 (11), 48094814.CrossRefGoogle Scholar
Zhou, Z., Zang, Z., Wang, H. & Wang, S. 2022 Far-field approximations to the derivatives of Green's function for the Ffowcs Williams and Hawkings equation. Adv. Aerodyn. 4 (1), 12.CrossRefGoogle Scholar