Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T14:25:10.169Z Has data issue: false hasContentIssue false

Heated falling films

Published online by Cambridge University Press:  14 November 2007

P. M. J. TREVELYAN*
Affiliation:
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
B. SCHEID*
Affiliation:
Service de Chimie-Physique E.P., Université Libre de Bruxelles, C.P. 165/62, 1050 Brussels, Belgium
C. RUYER-QUIL
Affiliation:
Laboratoire FAST, UMR 7608, CNRS, Universités P. et M. Curie et Paris Sud, Bât. 502, Campus Universitaire, 91405 Orsay Cedex, France, ptrevely@ulb.ac.be; bscheid@ulb.ac.be, ruyer@fast.u-psud.fr; s.kalliadasis@imperial.ac.uk
S. KALLIADASIS
Affiliation:
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
*
Present address: Centre for Nonlinear Phenomena and Complex Systems, CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium.
Present address: Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

Abstract

We present new insights and results for the problem of a film falling down a heated wall: (i) treatment of a mixed heat flux boundary condition on the substrate; (ii) development of a long-wave theory for large Péclet numbers; (iii) refined treatment of the energy equation based on a high-order Galerkin projection in terms of polynomial test functions which satisfy all boundary conditions; (iv) time-dependent computations for the free-surface height and interfacial temperature; (v) numerical solution of the full energy equation; (vi) demonstration of the existence of a thermal boundary layer at the front stagnation point of a solitary pulse; (vii) development of models that prevent negative temperatures and are in good agreement with the numerical solution of the full energy equation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.CrossRefGoogle Scholar
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.CrossRefGoogle Scholar
Chang, H.-C. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films. Elsevier.Google Scholar
Demekhin, E. A., Kaplan, M. A. & Shkadov, V. Ya. 1987 Mathematical models of the theory of viscous liquid films. Izv. Akad. Nauk SSSR, Mekh. Zhidk i Gaza 6, 916.Google Scholar
Doedel, E., Champneys, A., Fairfrieve, T., Kuznetsov, Y., Sandstede, B. & Wang, X. 1997 Auto 97 Continuation and Bifurcation Software for Ordinary Differential Equations. Montreal Concordia University.Google Scholar
Goodwin, R. & Homsy, G. M. 1991 Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids 3, 515528.CrossRefGoogle Scholar
Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.CrossRefGoogle Scholar
Goussis, D. A. & Kelly, R. E. 1991 Surface waves and thermocapillary instabilities in a liquid film flow. J. Fluid Mech. 223, 2445.CrossRefGoogle Scholar
Joo, S. W., Davis, S. H. & Bankoff, S. G. 1991 Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117146.CrossRefGoogle Scholar
Kabov, O. A. 1998 Formation of regular structures in a falling liquid film upon local heating. Thermophys. Aeromech. 5, 547551.Google Scholar
Kabov, O. A., Legros, J. K., Marchuk, I. V. & Scheid, B. 2000 Deformation of the free surface in a moving locally-heated thin liquid layer. Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza 3, 200208.Google Scholar
Kalliadasis, S., Kiyashko, A. & Demekhin, E. A. 2003 a Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech. 475, 377408.CrossRefGoogle Scholar
Kalliadasis, S., Demekhin, E. A., Ruyer-Quil, C. & Velarde, M. G. 2003 b Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech. 492, 303338.CrossRefGoogle Scholar
Kapitza, P. L. 1948 Wave flow of thin layers of a viscous fluid. Sov. Phys. J. Exp. Theor. Phys. 18, 328.Google Scholar
Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin layers of a viscous fluid: III. Experimental study of undulatory flow conditions. Sov. Phys. J. Exp. Theor. Phys. 19, 105120.Google Scholar
Kawahara, T. 1983 Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381383.CrossRefGoogle Scholar
Nakaya, C. 1989 Waves on a viscous fluid film down a vertical wall. Phys. Fluids A 1 (7), 11431154.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.CrossRefGoogle Scholar
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin film flows. J. Fluid Mech. 325, 163194.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results of the modeling of flows down inclined planes by weighted residual approximations. Phys. Fluids 14, 170183.CrossRefGoogle Scholar
Ruyer-Quil, C., Scheid, B., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. Kh. 2005 Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech. 538, 199222.CrossRefGoogle Scholar
Salamon, T. R., Armstrong, R. C. & Brown, R. A. 1994 Travelling waves on vertical films: numerical analysis using the finite element method. Phys. Fluids 6 (6), 22022220.CrossRefGoogle Scholar
Scheid, B. 2004 Evolution and stability of falling liquid films with thermocapillary effects. PhD thesis, Université Libre de Bruxelles.Google Scholar
Scheid, B., Oron, A., Colinet, P., Thiele, U. & Legros, J. C. 2002 Nonlinear evolution of nonuniformly heated falling liquid films. Phys. Fluids 14 (12), 41304151.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O. A., Legros, J. C. & Colinet, P. 2004 Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech. 527, 303335.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. Kh. 2005 Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech. 538, 223244.CrossRefGoogle Scholar
Shkadov, V. Ya. 1967 Wave models in the flow of a thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR, Mekh. Zhidki Gaza 1, 4350.Google Scholar
Shkadov, V. Ya. 1968 Theory of wave flow of a thin layer of a viscous liquid. Izv. Akad. Nauk SSSR, Mekh. Zhidki Gaza 2, 2025.Google Scholar
Shkadov, V. Ya. 1977 Solitary waves in a layer of viscous liquid. Izv. Akad. Nauk SSSR, Mekh. Zhidki Gaza 12, 6366.Google Scholar
Shraiman, B. 1987 Diffusive transport in a Rayleigh–Bénard convection cell. Phys. Rev. A 36, 261267.CrossRefGoogle Scholar
Smith, K. A. 1966 On convective instability induced by surface-tension gradients. J. Fluid Mech. 14, 401414.CrossRefGoogle Scholar
Strelitz, S. 1977 On the Routh–Hurwitz problem. Am. Math. Mon. 84, 542544.CrossRefGoogle Scholar
Trevelyan, P. M. J. & Kalliadasis, S. 2004 Dynamics of a reactive falling film at large Péclet numbers. I. Long-wave approximation. Phys. Fluids 16 (8), 31913208.CrossRefGoogle Scholar
Trevelyan, P. M. J., Kalliadasis, S., Merkin, J. H. & Scott, S. K. 2002 Mass transport enhancement in regions bounded by rigid walls. J. Engng Maths 42, 4564.CrossRefGoogle Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.CrossRefGoogle Scholar