Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T18:31:33.668Z Has data issue: false hasContentIssue false

Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

Published online by Cambridge University Press:  14 August 2013

A. Riols
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 14 avenue Edouard Belin, F-31400 Toulouse, France
F. Rincon*
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 14 avenue Edouard Belin, F-31400 Toulouse, France
C. Cossu
Affiliation:
CNRS-Institut de Mécanique des Fluides de Toulouse (IMFT), Allée du Professeur Camille Soula, 31400 Toulouse, France
G. Lesur
Affiliation:
UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France
P.-Y. Longaretti
Affiliation:
UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France
G. I. Ogilvie
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
J. Herault
Affiliation:
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, CNRS UMR 8550, 24 Rue Lhomond, 75231 Paris CEDEX 05, France
*
Email address for correspondence: francois.rincon@irap.omp.eu

Abstract

Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional nonlinear magnetohydrodynamic process, the study of which is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics with transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles born out of saddle-node bifurcations. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to injection of both kinetic and magnetic energy for the problem of transition to turbulence and dynamo action in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to understand better the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, P. J. 2010 Astrophysics of Planet Formation. Cambridge University Press.Google Scholar
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192.CrossRefGoogle ScholarPubMed
Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F. & Zhang, H. 2011 PETSc Web page. http://www.mcs.anl.gov/petsc.Google Scholar
Balbus, S. A. 2003 Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555.Google Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214.Google Scholar
Balbus, S. A. & Hawley, J. F. 1992 A powerful local shear instability in weakly magnetized disks. IV. Non-axisymmetric perturbations. Astrophys. J. 400, 610.Google Scholar
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1.Google Scholar
Balbus, S. A. & Henri, P. 2008 On the magnetic Prandtl number behaviour of accretion disks. Astrophys. J. 674, 408.Google Scholar
Barkley, D. 2011 Simplifying the complexity of pipe flow. Phys. Rev. E 84, 016309.Google Scholar
Birkhoff, G. D. 1935 Nouvelles recherches sur les systèmes dynamiques. Mem. Pont. Acad. Sci. Nov. Lyn. 1, 85.Google Scholar
Bodo, G., Cattaneo, F., Ferrari, A., Mignone, A. & Rossi, P. 2011 Symmetries, scaling laws, and convergence in shearing-box simulations of magneto-rotational instability driven turbulence. Astrophys. J. 739, 82.Google Scholar
Brandenburg, A. & Dintrans, B. 2006 Non-axisymmetric stability in the shearing sheet approximation. Astron. Astrophys. 450, 437.CrossRefGoogle Scholar
Brandenburg, A., Nordlund, A., Stein, R. F. & Torkelsson, U. 1995 Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow. Astrophys. J. 446, 741.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105.CrossRefGoogle Scholar
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554.Google Scholar
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. 46, 253.Google Scholar
Childress, S. & Gilbert, A. D. 1995 Stretch, Twist, Fold. The Fast Dynamo. Springer.Google Scholar
Christiansen, F., Cvitanović, P. & Putkaradze, V. 1997 Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity 10, 55.Google Scholar
Cline, K. S., Brummell, N. H. & Cattaneo, F. 2003 Dynamo action driven by shear and magnetic buoyancy. Astrophys. J. 599, 1449.Google Scholar
Collins, C., Katz, N., Wallace, J., Jara-Almonte, J., Reese, I., Zweibel, E. & Forest, C. B. 2012 Stirring unmagnetized plasma. Phys. Rev. Lett. 108, 115001.Google Scholar
Cvitanović, P. 1992 Periodic orbit theory in classical and quantum mechanics. Chaos 2, 1.Google Scholar
Cvitanović, P. & Gibson, J. F. 2010 Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. 142, 014007.Google Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83.Google Scholar
Dauchot, O. & Daviaud, F. 1995a Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys. Fluids 7, 335.Google Scholar
Dauchot, O. & Daviaud, F. 1995b Streamwise vortices in plane Couette flow. Phys. Fluids 7, 901.Google Scholar
Davies, C. R. & Hughes, D. W. 2011 The mean electromotive force resulting from magnetic buoyancy instability. Astrophys. J. 727, 112.Google Scholar
Davis, S. W., Stone, J. M. & Pessah, M. E. 2010 Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. Astrophys. J. 713, 52.Google Scholar
Ding, M., Grebogi, C., Ott, E. & Yorke, J. A. 1990 Transition to chaotic scattering. Phys. Rev. A 42, 7025.Google Scholar
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008a Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.Google Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008b Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255.Google Scholar
Eckhardt, B. 2009 Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds’ paper. Proc. R. Soc. Lond. A 367, 449.Google Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447.Google Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.Google Scholar
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343.Google Scholar
Feigenbaum, M. J. 1978 Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25.Google Scholar
Frank, J., King, A. & Raine, D. J. 2002 Accretion Power in Astrophysics, 3rd edn. Cambridge University Press.Google Scholar
Fromang, S. & Papaloizou, J. C. B. 2007 MHD simulations of the magnetorotational instability in a shearing box with zero net flux. I. The issue of convergence. Astron. Astrophys. 476, 1113.Google Scholar
Fromang, S., Papaloizou, J. C. B., Lesur, G. & Heinemann, T. 2007 MHD simulations of the magnetorotational instability in a shearing box with zero net flux. II. The effect of transport coefficients. Astron. Astrophys. 476, 1123.Google Scholar
Gallet, B., Herault, J., Laroche, C., Pétrélis, F & Fauve, S. 2012 Reversals of large-scale fields generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106, 468.CrossRefGoogle Scholar
Gavrilov, N. & Shil’nikov, L. 1972 On the three-dimensional dynamical systems close to a system with a structurally unstable homoclinic curve, i. Math. USSR Sb. 17, 467.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243.Google Scholar
Gissinger, C. 2012 A new deterministic model for chaotic reversals. Eur. Phys. J. B 85, 137.Google Scholar
Goldreich, P. & Lynden-Bell, D. 1965 II. Spiral arms as sheared gravitational instabilities. Mon. Not. R. Astron. Soc. 130, 125.Google Scholar
Goswami, B. K. & Basu, S. 2002 Self-similar organization of Gavrilov–Silnikov–Newhouse sinks. Phys. Rev. E 65, 036210.Google Scholar
Grassberger, P., Kantz, H. & Moenig, U. 1989 On the symbolic dynamics of the Hénon map. J. Phys. A 22, 5217.Google Scholar
Grebogi, C., Ott, E. & Yorke, J. A. 1982 Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507.Google Scholar
Grebogi, C., Ott, E. & Yorke, J. A. 1983 Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181.Google Scholar
Grebogi, C., Ott, E. & Yorke, J. A. 1987 Basin boundary metamorphoses: changes in accessible boundary orbits. Physica D 24, 243.Google Scholar
Gressel, O. 2010 A mean-field approach to the propagation of field patterns in stratified magnetorotational turbulence. Mon. Not. R. Astron. Soc. 405, 41.Google Scholar
Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603.Google Scholar
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14, 583.Google Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317.Google Scholar
Hartmann, L. 2009 Accretion Processes in Star Formation, 2nd edn. Cambridge University Press.Google Scholar
Hawley, J. F. & Balbus, S. A. 1991 A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. Astrophys. J. 376, 223.Google Scholar
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1995 Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440, 742.Google Scholar
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Local three-dimensional simulations of an accretion disk hydromagnetic dynamo. Astrophys. J. 464, 690.Google Scholar
Hénon, M. 1976 A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69.Google Scholar
Herault, J., Rincon, F., Cossu, C., Lesur, G., Ogilvie, G. I. & Longaretti, P.-Y. 2011 Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. Phys. Rev. E 84, 036321.Google Scholar
Hernandez, V., Roman, J. E. & Vidal, V. 2005 SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 351.Google Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305, 1594.CrossRefGoogle ScholarPubMed
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.Google Scholar
Hof, B., de Lozar, A., Kuik, D. J. & Westerweel, J. 2008 Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101, 214501.Google Scholar
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 59.Google Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large-scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.Google Scholar
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23, 061702.Google Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703.Google Scholar
Käpylä, P. J. & Korpi, M. J. 2011 Magnetorotational instability driven dynamos at low magnetic Prandtl numbers. Mon. Not. R. Astron. Soc. 413, 901.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203.Google Scholar
Kelvin, Lord 1887 Stability of fluid motion – rectilineal motion of viscous fluid between two parallel planes. Phil. Mag. 24, 188.Google Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, 17.Google Scholar
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69.Google Scholar
Kim, L. & Moehlis, J. 2008 Characterizing the edge of chaos for a shear flow model. Phys. Rev. E 78, 036315.Google Scholar
Knobloch, E. 1985 The stability of non-separable barotropic and baroclinic shear flows. Astrophys. Space Sci. 116, 149.Google Scholar
Knobloch, E. & Moore, D. R. 1986 Transition to chaos in two-dimensional double-diffusive convection. J. Fluid Mech. 166, 409.Google Scholar
Knobloch, E. & Weiss, N. O. 1981 Bifurcations in a model of double-diffusive convection. Phys. Lett. A 85, 127.Google Scholar
Korycansky, D. G. 1992 Growth and decay of disturbances in stratified shear flow in a rotating frame. Astrophys. J. 399, 176.Google Scholar
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near the onset of chaos in plane Couette flow. Chaos 22, 047505.Google Scholar
Lan, Y. & Cvitanović, P. 2008 Unstable recurrent patterns in Kuramoto–Sivashinsky dynamics. Phys. Rev. E 78, 026208.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243.Google Scholar
Lebovitz, N. R. 2009 Shear-flow transition: the basin boundary. Nonlinearity 22, 2645.Google Scholar
Lebovitz, N. R. 2012 Boundary collapse in models of shear-flow transition. Commun. Nonlinear Sci. Numer. Simul. 17, 2095.Google Scholar
Lesur, G. & Longaretti, P.-Y. 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444, 25.Google Scholar
Lesur, G. & Longaretti, P.-Y. 2007 Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport. Mon. Not. R. Astron. Soc. 378, 1471.Google Scholar
Lesur, G. & Ogilvie, G. I. 2008a Localized magnetorotational instability and its role in the accretion disc dynamo. Mon. Not. R. Astron. Soc. 391, 1437.Google Scholar
Lesur, G. & Ogilvie, G. I. 2008b On self-sustained dynamo cycles in accretion discs. Astron. Astrophys. 488, 451.Google Scholar
Lin, D. N. C. & Papaloizou, J. C. B. 1996 Theory of accretion disks II: application to observed systems. Annu. Rev. Astron. Astrophys. 34, 703.Google Scholar
Longaretti, P.-Y. & Lesur, G. 2010 MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites. Astron. Astrophys. 516, 51.Google Scholar
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.Google Scholar
Lynden-Bell, D. & Pringle, J. E. 1974 The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603.Google Scholar
Manneville, P. 2009 Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E 79, 025301.Google Scholar
Mellibovsky, F. & Eckhardt, B. 2011 Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow. J. Fluid Mech. 670, 96.Google Scholar
Mellibovsky, F. & Eckhardt, B. 2012 From travelling waves to mild chaos: a supercritical bifurcation cascade in pipe flow. J. Fluid Mech. 709, 149.Google Scholar
Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.Google Scholar
Miesch, M. S., Gilman, P. A. & Dikpati, M. 2007 Nonlinear evolution of global magnetoshear instabilities in a three-dimensional thin-shell model of the solar tachocline. Astrophys. J. Supp. Ser. 168, 337.Google Scholar
Moehlis, J., Eckhardt, B. & Faisst, H. 2004a Fractal lifetimes in the transition to turbulence. Chaos 14, 11.Google Scholar
Moehlis, J., Faisst, H. & Eckhardt, B. 2004b A low-dimensional model for turbulent shear flows. New J. Phys. 6, 56.Google Scholar
Moehlis, J., Faisst, H. & Eckhardt, B. 2005 Periodic orbits and chaotic sets in a low-dimensional model for shear flows. SIAM J. Appl. Dyn. Syst. 4, 352.Google Scholar
Moehlis, J., Smith, T. R., Holmes, P. & Faisst, H. 2002 Models for turbulent plane Couette flow using the proper orthogonal decomposition. Phys. Fluids 14, 2493.Google Scholar
Moffatt, H. K. 1977 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Monchaux, R., Berhanu, M., Aumaitre, S., Chiffaudel, A., Daviaud, F., Dubrulle, B., Ravelet, F., Fauve, S., Mordant, N., Petrelis, F., Bourgoin, M., Odier, P., Pinton, J. -F., Plihon, N. & Volk, R. 2009 The Von Kármán Sodium experiment: turbulent dynamical dynamos. Phys. Fluids 21, 035108.Google Scholar
Moore, D. R., Toomre, J., Knobloch, E. & Weiss, N. O. 1983 Period doubling and chaos in partial differential equations for thermosolutal convection. Nature 303, 663.Google Scholar
Moxey, D. & Barkley, D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. 107 (18), 8091.Google Scholar
Nagata, M. 1986 Bifurcations in Couette flow between almost corotating cylinders. J. Fluid Mech. 169, 229.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519.Google Scholar
Newhouse, S. E. 1979 The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 50, 101.CrossRefGoogle Scholar
Ogilvie, G. I. & Pringle, J. E. 1996 The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. Mon. Not. R. Astron. Soc. 279, 152.Google Scholar
Oishi, J. S. & Mac Low, M.-M. 2011 Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value. Astrophys. J. 740, 18.Google Scholar
Orr, W. M. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Irish Acad. A 27, 9.Google Scholar
Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press.Google Scholar
Palis, J. & Takens, F. 1993 Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press.Google Scholar
Papaloizou, J. C. B. & Lin, D. N. C. 1995 Theory of accretion disks I: angular momentum transport processes. Annu. Rev. Astron. Astrophys. 33, 505.Google Scholar
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.Google Scholar
Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 3.Google Scholar
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.Google Scholar
Pringle, J. E. 1981 Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys. 19, 137.Google Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8, 3112.Google Scholar
Rempel, E. L., Lesur, G. & Proctor, M. R. E. 2010 Supertransient magnetohydrodynamic turbulence in Keplerian shear flows. Phys. Rev. Lett. 105, 044501.Google Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct of sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935.Google Scholar
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007 Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98, 254502.Google Scholar
Rincon, F., Ogilvie, G. I., Proctor, M. R. E. & Cossu, C. 2008 Subcritical dynamos in shear flows. Astron. Nachr. 329, 750.Google Scholar
Robinson, C. 1983 Bifurcation to infinitely many sinks. Commun. Math. Phys. 90, 433.Google Scholar
Schmid, P. J. & Henningson, D. S. 2000 Stability and Transition in Shear Flows. Springer.Google Scholar
Schmiegel, A. 1997 Fractal stability border in plane couette flow. Phys. Rev. Lett. 79, 5250.Google Scholar
Schneider, T., Eckhardt, B. & Yorke, J. A. 2006 Edge of chaos in pipe flow. Chaos 16, 041103.Google Scholar
Schneider, T., Eckhardt, B. & Yorke, J. A. 2007a Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.Google Scholar
Schneider, T. M. & Eckhardt, B. 2008 Lifetime statistics in transitional pipe flow. Phys. Rev. E 78, 046310.Google Scholar
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007b Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 066313.Google Scholar
Schneider, T. M., Gibson, J. F., Lagha, M., de Lillo, F. & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.Google Scholar
Simó, C. 1989 On the analytical and numerical approximation of invariant manifolds. In Les Méthodes Modernes de la Mécanique Céleste (Goutelas ’89) (ed. Benest, D. & Froeschlé, C.), p. 285. Editions Frontières.Google Scholar
Simon, J. B., Beckwith, K. & Armitage, P. J. 2012 Emergent mesoscale phenomena in magnetized accretion disc turbulence. Mon. Not. R. Astron. Soc. 422, 2685.Google Scholar
Simon, J. B., Hawley, J. F. & Beckwith, K. 2011 Resistivity-driven state changes in vertically stratified accretion disks. Astrophys. J. 730, 94.Google Scholar
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.Google Scholar
Smale, S. 1967 Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747.Google Scholar
Sparrow, C. 1982 The Lorenz Equations: Bifurcation, Chaos and Strange Attractors, Applied Mathathematical Science, vol. 41. Springer.Google Scholar
Spruit, H. C. 2002 Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923.Google Scholar
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren LORENTZ-Feldstärke $ \overline{\boldsymbol{v}\times \boldsymbol{B}} $ für ein elektrisch leitendes Medium in turbulenter, durch CORIOLIS-Kräfte beeinflußter Bewegung. Z. Naturforsch. Teil A 21, 369.Google Scholar
Sterling, D., Dullin, H. R. & Meiss, J. D. 1999 Homoclinic bifurcations for the Hénon map. Physica D 134, 153.Google Scholar
Stone, J. M., Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks. Astrophys. J. 463, 656.Google Scholar
Swift, J. W. & Wiesenfeld, K. 1984 Suppression of period doubling in symmetric systems. Phys. Rev. Lett. 52, 705.Google Scholar
Terquem, C. & Papaloizou, J. C. B. 1996 On the stability of an accretion disc containing a toroidal magnetic field. Mon. Not. R. Astron. Soc. 279, 767.Google Scholar
Tobias, S. M., Cattaneo, F. & Brummell, N. H. 2011 On the generation of organized magnetic fields. Astrophys. J. 728, 153.Google Scholar
Umurhan, O. M. & Regev, O. 2004 Hydrodynamic stability of rotationally supported flows: Linear and nonlinear 2D shearing box results. Astron. Astrophys. 427, 855.Google Scholar
van Veen, L. & Kawahara, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett. 107, 114501.Google Scholar
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 1398.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339.Google Scholar
Vollmer, J., Schneider, T. & Eckhardt, B. 2009 Basin boundary, edge of chaos and edge state in a two-dimensional model. New J. Phys. 11, 013040.Google Scholar
Waleffe, F. 1995a Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths 95, 319.Google Scholar
Waleffe, F. 1995b Transition in shear flows. Nonlinear normality versus non-normal linearity. Phys. Fluids 7, 3060.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883.Google Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 4140.Google Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93.Google Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517.Google Scholar
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.Google Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333.Google Scholar
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514.Google Scholar
Willis, A. P. & Kerswell, R. R. 2007 Critical behaviour in the relaminarization of localized turbulence in pipe flow. Phys. Rev. Lett. 98, 014501.Google Scholar
Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states. J. Fluid Mech. 619, 213.Google Scholar
Yorke, J. A. & Alligood, T. 1983 Period doubling cascades of attractors: a prerequisite for horseshoes. Bull. Am. Math. Soc. 9, 319.Google Scholar
Zel’dovich, Y. B., Ruzmaikin, A. A., Molchanov, S. A. & Sokoloff, D. D. 1984 Kinematic dynamo problem in a linear velocity field. J. Fluid Mech. 144, 1.Google Scholar