Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-21T16:30:40.615Z Has data issue: false hasContentIssue false

Genesis of electric field assisted microparticle assemblage in a dielectric fluid

Published online by Cambridge University Press:  09 March 2021

Satarupa Dutta
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam781039, India
Amit Kumar Singh
Affiliation:
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam781039, India
Partho Sarathi Gooh Pattader
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam781039, India Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam781039, India
Dipankar Bandyopadhyay*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam781039, India Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam781039, India
*
Email address for correspondence: dipban@iitg.ac.in

Abstract

Oscillatory motions of charged particles inside a liquid medium have been explored under the influence of an electric field emulating field-induced particle-laden fluid flows. The properties of the surrounding fluid are found to play key roles in the kinetics of such a particle aggregation process. While the weakly conducting or insulating liquids promote high-frequency oscillations of charged particles followed by a quick assemblage, the viscosity and relative permittivity of the liquid play significant roles in modulating the time scale. In fact, the origin of such motions in a multi-particle system is very similar to a system with a single charged particle wherein the particle gathers charge from one of the electrodes before moving towards the other of opposite polarity. Interestingly, in the multi-particle system, an unprecedented charge reversal is observed wherein a charged particle reverses its direction of motion after colliding with another particle of opposite polarity. Experiments together with simulations further reveal that, while the equal-sized particles undergo an electric field driven ‘elastic’ collision and show synchronized motions with nearly similar speeds of approach and separation, the motions of unequal-sized particles are rather non-uniform after undergoing an ‘inelastic’ collision. Importantly, the simulations with two-particle systems uncover the presence of counter-rotating vortices surrounding the charged particles. The results reported not only usher the genesis of the chain-like assemblage in the multi-particle systems but also open up the possibility of the generation of on-demand power-law liquid properties through ‘chaining’ or ‘layering’ of the charged particles.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adan, A., Alizada, G., Kiraz, Y., Baran, Y. & Nalbant, A. 2017 Flow cytometry: basic principles and applications. Crit. Rev. Biotechnol. 37 (2), 163176.CrossRefGoogle ScholarPubMed
Ai, Y. & Qian, S. 2010 Dc dielectrophoretic particle–particle interactions and their relative motions. J. Colloid Interface Sci. 346 (2), 448454.CrossRefGoogle ScholarPubMed
Albrecht, D.R., Underhill, G.H., Mendelson, A. & Bhatia, S.N. 2007 Multiphase electropatterning of cells and biomaterials. Lab on a Chip 7 (6), 702709.CrossRefGoogle ScholarPubMed
Barrett, L.M., Skulan, A.J., Singh, A.K., Cummings, E.B. & Fiechtner, G.J. 2005 Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Analyt. Chem. 77 (21), 67986804.CrossRefGoogle ScholarPubMed
Beér, A. & Ariel, G. 2019 A statistical physics view of swarming bacteria. Movement Ecol. 7, 9.Google Scholar
Beer, M. et al. 2017 A novel microfluidic 3D platform for culturing pancreatic ductal adenocarcinoma cells: comparison with in vitro cultures and in vivo xenografts. Sci. Rep. 7 (1), 1325.CrossRefGoogle ScholarPubMed
Bichoutskaia, E., Boatwright, A.L., Khachatourian, A. & Stace, A.J. 2010 Electrostatic analysis of the interactions between charged particles of dielectric materials. J. Chem. Phys. 133 (2), 024105.CrossRefGoogle ScholarPubMed
Birlasekaran, S. 1991 The measurement of charge on single particles in transformer oil. IEEE Trans. Elec. Insul. 26 (6), 10941103.CrossRefGoogle Scholar
Birwa, S.K., Rajalakshmi, G., Govindarajan, R. & Menon, N. 2018 Solid-on-solid contact in a sphere-wall collision in a viscous fluid. Phys. Rev. Fluids 3 (4), 044302.CrossRefGoogle Scholar
Bishop, K.J.M., Drews, A.M., Cartier, C.A., Pandey, S. & Dou, Y. 2018 Contact charge electrophoresis: fundamentals and microfluidic applications. Langmuir 34 (22), 63156327.CrossRefGoogle ScholarPubMed
Bonnecaze, R.T. & Brady, J.F. 1992 Dynamic simulation of an electrorheological fluid. J. Chem. Phys. 96 (3), 21832202.CrossRefGoogle Scholar
Cartier, C.A., Drews, A.M. & Bishop, K.J.M 2014 Microfluidic mixing of nonpolar liquids by contact charge electrophoresis. Lab on a Chip 14 (21), 42304236.CrossRefGoogle ScholarPubMed
Cheng, S., Xia, T., Liu, M., Xu, S., Gao, S., Zhang, G. & Tao, S. 2019 Optical manipulation of microparticles with the momentum flux transverse to the optical axis. Opt. Laser Technol. 113, 266272.CrossRefGoogle Scholar
Cho, A.Y.H. 1964 Contact charging of micron-sized particles in intense electric fields. J. Appl. Phys. 35 (9), 25612564.CrossRefGoogle Scholar
Crassous, J.J. & Demirörs, A.F. 2017 Multiscale directed self-assembly of composite microgels in complex electric fields. Soft Matter 13 (1), 88100.CrossRefGoogle Scholar
Davis, L.C 1993 The metal-particle/insulating oil system: an ideal electrorheological fluid. J. Appl. Phys. 73 (2), 680683.CrossRefGoogle Scholar
Davis, M.H. 1964 Two charged spherical conductors in a uniform electric field: forces and field strength. Q. J. Mech. Appl. Maths 17, 499511.CrossRefGoogle Scholar
Delannay, R., Valance, A., Mangeney, A., Roche, O. & Richard, P. 2017 Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D: Appl. Phys. 50 (5), 053001.CrossRefGoogle Scholar
Drews, A.M., Cartier, C.A. & Bishop, K.J.M. 2015 Contact charge electrophoresis: experiment and theory. Langmuir 31 (13), 38083814.CrossRefGoogle ScholarPubMed
Drews, A.M., Kowalik, M. & Bishop, K.J.M. 2014 Charge and force on a conductive sphere between two parallel electrodes: a stokesian dynamics approach. J. Appl. Phys. 116 (7), 074903.CrossRefGoogle Scholar
Drews, A.M., Lee, H. -Y. & Bishop, K.J.M. 2013 Ratcheted electrophoresis for rapid particle transport. Lab on a Chip 13 (22), 42954298.CrossRefGoogle ScholarPubMed
Dsouza, P.V. & Nott, P.R. 2020 A non-local constitutive model for slow granular flow that incorporates dilatancy. J. Fluid Mech. 888, R3.CrossRefGoogle Scholar
Dumazer, G., Sandnes, B., Ayaz, M., Måløy, K. & Flekkøy, E.G. 2016 Frictional fluid dynamics and plug formation in multiphase millifluidic flow. Phys. Rev. Lett. 117 (2), 028002.CrossRefGoogle ScholarPubMed
Dutta, S., Ghosh, A., Pattader, P.S.G. & Bandyopadhyay, D. 2019 Electric field mediated von kármán vortices in stratified microflows: transition from linear instabilities to coherent mixing. J. Fluid Mech. 865, 169211.CrossRefGoogle Scholar
Elton, E.S., Rosenberg, E.R. & Ristenpart, W.D. 2017 Crater formation on electrodes during charge transfer with aqueous droplets or solid particles. Phys. Rev. Lett. 119 (9), 094502.CrossRefGoogle ScholarPubMed
Eslami, G., Esmaeilzadeh, E. & Pérez, A.T. 2016 Modeling of conductive particle motion in viscous medium affected by an electric field considering particle-electrode interactions and microdischarge phenomenon. Phys. Fluids 28 (10), 107102.CrossRefGoogle Scholar
Felici, N.J. 1966 Forces and charges of small objects in contact with an electrode subjected to an electric field. Rev. Gen. Elec. 75, 11451160.Google Scholar
Feng, J.Q. 2000 Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E 62 (2), 2891.CrossRefGoogle ScholarPubMed
Feng, J.Q. & Hays, D.A. 1998 A finite-element analysis of the electrostatic force on a uniformly charged dielectric sphere resting on a dielectric-coated electrode in a detaching electric field. IEEE Trans. Ind. Applics. 34 (1), 8491.CrossRefGoogle Scholar
Feng, J.Q. & Hays, D.A. 2003 Relative importance of electrostatic forces on powder particles. Powder Technol. 135, 6575.CrossRefGoogle Scholar
Feynman, R.P., Leighton, R.B. & Sands, M. 1965 The feynman lectures on physics; vol. I. Am. J. Phys. 33 (9), 750752.CrossRefGoogle Scholar
Flittner, R. & Přibyl, M. 2017 Computational fluid dynamics model of rhythmic motion of charged droplets between parallel electrodes. J. Fluid Mech. 822, 3153.CrossRefGoogle Scholar
Gangwal, S., Cayre, O.J. & Velev, O.D. 2008 Dielectrophoretic assembly of metallodielectric janus particles in ac electric fields. Langmuir 24 (23), 1331213320.CrossRefGoogle ScholarPubMed
Hendrickson, G. 2006 Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem. Engng Sci. 61 (4), 10411064.CrossRefGoogle Scholar
Hossan, M.R., Dillon, R., Roy, A.K. & Dutta, P. 2013 Modeling and simulation of dielectrophoretic particle-particle interactions and assembly. J. Colloid Interface Sci. 394, 619629.CrossRefGoogle Scholar
Hossan, M.R., Gopmandal, P.P., Dillon, R. & Dutta, P. 2016 A comprehensive numerical investigation of dc dielectrophoretic particle? Particle interactions and assembly. Colloids Surf. A 506, 127137.CrossRefGoogle Scholar
Hunter, R.J. 2013 Zeta Potential in Colloid Science: Principles and Applications, vol. 2. Academic Press.Google Scholar
Im, D.J., Ahn, M.M., Yoo, B.S., Moon, D., Lee, D.W. & Kang, I.S. 2012 Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid. Langmuir 28 (32), 1165611661.CrossRefGoogle Scholar
Jiang, W. & Chen, G. 2019 Dispersion of active particles in confined unidirectional flows. J. Fluid Mech. 877, 134.CrossRefGoogle Scholar
Jones, T.B. & Jones, T.B. 2005 Electromechanics of Particles. Cambridge University Press.Google Scholar
Joseph, G.G., Zenit, R., Hunt, M.L. & Rosenwinkel, A.M. 2001 Particle-wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Kadaksham, A.T.J., Singh, P. & Aubry, N. 2004 Dielectrophoresis of nanoparticles. Electrophoresis 25 (21–22), 36253632.CrossRefGoogle ScholarPubMed
Kang, S. 2014 Dielectrophoretic motion of two particles with diverse sets of the electric conductivity under a uniform electric field. Comput. Fluids 105, 231243.CrossRefGoogle Scholar
Kang, K.H. & Li, D. 2006 Dielectric force and relative motion between two spherical particles in electrophoresis. Langmuir 22 (4), 16021608.CrossRefGoogle ScholarPubMed
Kasbaoui, M.H., Koch, D.L. & Desjardins, O. 2019 Clustering in euler-euler and euler-lagrange simulations of unbounded homogeneous particle-laden shear. J. Fluid Mech. 859, 174203.CrossRefGoogle Scholar
Khayari, A. & Perez, A.T. 2002 Charge acquired by a spherical ball bouncing on an electrode: comparison between theory and experiment. IEEE Trans. Dielec. Elec. Insul. 9 (4), 589595.CrossRefGoogle Scholar
Knutson, C.R., Edmond, K.V., Tuominen, M.T. & Dinsmore, A.D. 2007 Shuttling of charge by a metallic sphere in viscous oil. J. Appl. Phys. 101 (1), 013706.CrossRefGoogle Scholar
Ku, D.N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29 (1), 399434.CrossRefGoogle Scholar
Kumaran, V. 2020 A suspension of conducting particles in a magnetic field – the particle stress. J. Fluid Mech. 901, A36.CrossRefGoogle Scholar
Lee, P.Y., Costumbrado, J., Hsu, C. -Y. & Kim, Y.H. 2012 Agarose gel electrophoresis for the separation of DNA fragments. J. Vis. Exp. 62, e3923.Google Scholar
Liao, X., Makris, M. & Luo, X.M. 2016 Fluorescence-activated cell sorting for purification of plasmacytoid dendritic cells from the mouse bone marrow. J. Vis. Exp. 117, e54641.Google Scholar
Lippert, M.C. & Woods, A.W. 2020 Experiments on the sedimentation front in steady particle-driven gravity currents. J. Fluid Mech. 889, A20.CrossRefGoogle Scholar
Liu, B., Besseling, T.H., Hermes, M., Demirörs, A.F., Imhof, A. & Van Blaaderen, A. 2014 Switching plastic crystals of colloidal rods with electric fields. Nat. Commun. 5, 3092.CrossRefGoogle ScholarPubMed
Lu, X., Soto, F., Li, J., Li, T., Liang, Y. & Wang, J. 2017 Topographical manipulation of microparticles and cells with acoustic microstreaming. ACS Appl. Mater. Interfaces 9 (44), 3887038876.CrossRefGoogle ScholarPubMed
Lu, G. & Zhai, X. 2019 Analysis on heat transfer and pressure drop of a microchannel heat sink with dimples and vortex generators. Int. J. Therm. Sci. 145, 105986.CrossRefGoogle Scholar
Malvern, L.E. 1969 Introduction to the Mechanics of a Continuous Medium. Prentice Hall.Google Scholar
Marath, N.K. & Subramanian, G. 2018 The inertial orientation dynamics of anisotropic particles in planar linear flows. J. Fluid Mech. 844, 357402.CrossRefGoogle Scholar
Mersch, E. & Vandewalle, N. 2011 Antiphase synchronization of electrically shaken conducting beads. Phys. Rev. E 84 (6), 061301.CrossRefGoogle ScholarPubMed
Mirzaeian, N. & Alba, K. 2018 Monodisperse particle-laden exchange flows in a vertical duct. J. Fluid Mech. 847, 134160.CrossRefGoogle Scholar
Moncada-Hernandez, H., Nagler, E. & Minerick, A.R. 2014 Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains. Electrophoresis 35 (12–13), 18031813.CrossRefGoogle ScholarPubMed
Nakata, S., Hata, M., Ikura, Y.S., Heisler, E., Awazu, A., Kitahata, H. & Nishimori, H. 2013 Motion with memory of a self-propelled object. J. Phys. Chem. C 117 (46), 2449024495.CrossRefGoogle Scholar
Pierson, J.-L. & Magnaudet, J. 2018 Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics. J. Fluid Mech. 835, 808851.CrossRefGoogle Scholar
Pohl, H.A. 1958 Some effects of nonuniform fields on dielectrics. J. Appl. Phys. 29 (8), 11821188.CrossRefGoogle Scholar
Ren, Q.Y., Wang, L.F. & Huang, Q.A. 2016 A new method for real-time measuring the temperature-dependent dielectric constant of the silicone oil. IEEE Sens. J. 16 (24), 87928797.CrossRefGoogle Scholar
Ruiz-Angulo, A., Roshankhah, S. & Hunt, M.L. 2019 Surface deformation and rebound for normal single-particle collisions in a surrounding fluid. J. Fluid Mech. 871, 10441066.CrossRefGoogle Scholar
Shrimpton, J.S. & Yule, A.J. 1999 Characterisation of charged hydrocarbon sprays for application in combustion systems. Exp. Fluids 26 (5), 460469.CrossRefGoogle Scholar
Smythe, W.B. 1988 Static and Dynamic Electricity. Taylor and Francis.Google Scholar
Soria, C., Ramos, A. & Pérez, A.T. 1997 The charged bouncing ball: an experimental model for period-doubling bifurcation. Europhys. Lett. 37 (8), 541.CrossRefGoogle Scholar
Suzuki, M., Yasukawa, T., Shiku, H. & Matsue, T. 2007 Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel. Langmuir 23 (7), 40884094.CrossRefGoogle ScholarPubMed
Swaminathan, T.N. & Hu, H.H. 2004 Particle interactions in electrophoresis due to inertia. J. Colloid Interface Sci. 273 (1), 324330.CrossRefGoogle ScholarPubMed
Swan, J.W. & Brady, J.F. 2007 Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids 19 (11), 113306.CrossRefGoogle Scholar
Swan, J.W. & Brady, J.F. 2011 The hydrodynamics of confined dispersions. J. Fluid Mech. 687, 254299.CrossRefGoogle Scholar
Tobazéon, R. 1996 Electrohydrodynamic behaviour of single spherical or cylindrical conducting particles in an insulating liquid subjected to a uniform dc field. J. Phys. D: Appl. Phys. 29 (10), 2595.CrossRefGoogle Scholar
Velev, O.D. & Bhatt, K.H. 2006 On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2 (9), 738750.CrossRefGoogle ScholarPubMed
Velev, O.D., Gangwal, S. & Petsev, D.N. 2009 Particle-localized ac and dc manipulation and electrokinetics. Annu. Rep. Prog. Chem. C: Phys. Chem. 105, 213246.CrossRefGoogle Scholar
Winslow, W.M. 1949 Induced fibration of suspensions. J. Appl. Phys. 20 (12), 11371140.CrossRefGoogle Scholar
Wong, J., Lindstrom, M. & Bertozzi, A.L. 2019 Fast equilibration dynamics of viscous particle-laden flow in an inclined channel. J. Fluid Mech. 879, 2853.CrossRefGoogle Scholar
Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K. & Scrivens, W.A. 2004 Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126 (40), 1273612737.CrossRefGoogle ScholarPubMed
Yariv, E. 2004 Inertia-induced electrophoretic interactions. Phys. Fluids 16 (4), L24L27.CrossRefGoogle Scholar
Yu-lan, L., Biao, W. & Dian-fu, W. 2003 A theoretical medelling of the chain structure formation in electrorheological fluids. Appl. Math. Mech. 24 (4), 385395.CrossRefGoogle Scholar
Yuan, H.G., Kalfas, G. & Ray, W.H. 1991 Suspension polymerization. J. Macromol. Sci. C: Polym. Rev. 31 (2–3), 215299.CrossRefGoogle Scholar
Zade, S., Shamu, T.J., Lundell, F. & Brandt, L. 2020 Finite-size spherical particles in a square duct flow of an elastoviscoplastic fluid: an experimental study. J. Fluid Mech. 883, A6.CrossRefGoogle Scholar
Zhang, H.B., Edirisinghe, M.J. & Jayasinghe, S.N. 2006 Flow behaviour of dielectric liquids in an electric field. J. Fluid Mech. 558, 103111.CrossRefGoogle Scholar
Zhang, C., Khoshmanesh, K., Mitchell, A. & Kalantar-Zadeh, K. 2010 Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396 (1), 401420.CrossRefGoogle ScholarPubMed
Zhang, K. & Rival, D.E. 2020 On the dynamics of unconfined and confined vortex rings in dense suspensions. J. Fluid Mech. 902, A6.CrossRefGoogle Scholar

Dutta et al. supplementary movie 1

See pdf file for movie caption

Download Dutta et al. supplementary movie 1(Video)
Video 7.5 MB

Dutta et al. supplementary movie 2

See pdf file for movie caption

Download Dutta et al. supplementary movie 2(Video)
Video 753.4 KB

Dutta et al. supplementary movie 3

See pdf file for movie caption

Download Dutta et al. supplementary movie 3(Video)
Video 446 KB

Dutta et al. supplementary movie 4

See pdf file for movie caption
Download Dutta et al. supplementary movie 4(Video)
Video 5.8 MB

Dutta et al. supplementary movie 5

See pdf file for movie caption

Download Dutta et al. supplementary movie 5(Video)
Video 1.4 MB

Dutta et al. supplementary movie 6

See pdf file for movie caption

Download Dutta et al. supplementary movie 6(Video)
Video 1.3 MB

Dutta et al. supplementary movie 7

See pdf file for movie caption

Download Dutta et al. supplementary movie 7(Video)
Video 1.4 MB

Dutta et al. supplementary movie 8

See pdf file for movie caption

Download Dutta et al. supplementary movie 8(Video)
Video 1.7 MB

Dutta et al. supplementary movie 9

See pdf file for movie caption

Download Dutta et al. supplementary movie 9(Video)
Video 3.7 MB

Dutta et al. supplementary movie 10

See pdf file for movie caption

Download Dutta et al. supplementary movie 10(Video)
Video 3.6 MB
Supplementary material: PDF

Dutta et al. supplementary material

Captions for movies 1-10

Download Dutta et al. supplementary material(PDF)
PDF 28.1 KB
Supplementary material: PDF

Dutta et al. supplementary material

Supplementary data

Download Dutta et al. supplementary material(PDF)
PDF 1.5 MB