Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T12:30:26.572Z Has data issue: false hasContentIssue false

Flow transitions and effective properties in multiphase Taylor–Couette flow

Published online by Cambridge University Press:  15 March 2024

Arthur B. Young
Affiliation:
Harvard Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
Abhishek Shetty
Affiliation:
Rheology Division, Advanced Technical Center, Anton Paar USA, Ashland, VA 23005, USA
Melany L. Hunt*
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: hunt@caltech.edu

Abstract

The properties of multiphase flows are challenging to measure, and yet effective properties are fundamental to modelling and predicting flow behaviour. The current study is motivated by rheometric measurements of a gas-fluidized bed using a coaxial rheometer in which the fluidization rate and the rotational speed can be varied independently. The measured torque displays a range of rheological states: quasistatic, dense granular flow behaviour at low fluidization rates and low-to-moderate shear rates; turbulent toroidal-vortex flow at high shear rates and moderate-to-high fluidization rates; and viscous-like behaviour with rate-dependent torque at high shear rates and low fluidization or at low shear rates and high fluidization. To understand the solid-like to fluid-like transitions, additional experiments were performed in the same rheometer using single-phase liquid and liquid–solid suspensions. The fluidized bed experiments are modelled as a Bingham plastic for low fluidization rates, and as a shear-thinning Carreau liquid at high fluidization rates. The suspensions are modelled using the Krieger–Dougherty effective viscosity. The results demonstrate that, by using the effective properties, the inverse Bingham number marks the transition from solid-like to viscous-flow behaviour; a modified gap Reynolds number based on the thickness of the shear layer specifies the transition from solid-like to turbulent vortical flow; and a gap Reynolds number distinguishes viscous behaviour from turbulent vortical flow. The results further demonstrate that these different multiphase flows undergo analogous flow transitions at similar Bingham or Reynolds numbers and the corresponding dimensionless torques show comparable scaling in response to annular shear.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Fan, X. & Mauri, R. 1994 On the measurement of the relative viscosity of suspensions. J. Rheol. 38 (5), 12851296.CrossRefGoogle Scholar
Acrivos, A., Mauri, R. & Fan, X. 1993 Shear–induced resuspension in a Couette device. Intl J. Multiphase Flow 19 (5), 797802.CrossRefGoogle Scholar
Alam, M. & Ghosh, M. 2022 Unifying torque scaling in counter-rotating suspension Taylor–Couette flow. Phil. Trans. A 381, 20220226.Google Scholar
Alibenyahia, B., Lemaitre, C., Nouar, C. & Ait-Messaoudene, N. 1995 Revisiting the stability of circular Couette flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 183–184, 3751.Google Scholar
Anjaneyulu, P. & Khakhar, D.V. 1995 Rheology of a gas-fluidized bed. Powder Technol. 83, 2934.CrossRefGoogle Scholar
Bagnold, R.A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.Google Scholar
Bakhtiyarov, S.I., Overfelt, R.A. & Siginerm, D. 2002 Progress in an Industrial Application of Fluidized Beds: Advances in the Sand Core Making Process, 2nd edn, pp. 187–222. Taylor & Francis.Google Scholar
Balmforth, N.J., Frigaard, I.A. & Ovarlez, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.CrossRefGoogle Scholar
Baroudi, L., Majji, M.V. & Morris, J.F. 2020 Effect of inertial migration of particles on flow transitions of a suspension Taylor–Couette flow. Phys. Rev. Fluids 5, 114303.CrossRefGoogle Scholar
Baroudi, L., Majji, M.V., Peluso, S. & Morris, J.F. 2023 Taylor–Couette flow of hard-sphere suspensions: overview of current understanding. Phil. Trans. A 381, 20220125.Google ScholarPubMed
van den Berg, T.H., Doering, C.R., Lohse, D. & Lathrop, D.P. 2003 Smooth and rough boundaries in turbulent Taylor–Couette flow. Phys. Rev. E 68 (3), 036307.CrossRefGoogle ScholarPubMed
Carreau, P.J. 1972 Rheological equations from molecular network theories. J. Rheol. 16 (1), 99127.Google Scholar
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. USA 46 (2), 253257.CrossRefGoogle ScholarPubMed
Colafigli, A., Massei, L., Lettieri, P. & Gibilaro, L. 2009 Apparent viscosity measurements in a homogeneous gas-fluidized bed. Chem. Engng Sci. 64, 144152.CrossRefGoogle Scholar
Cole, J.A. 1976 Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75 (1), 115.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21 (3), 385425.CrossRefGoogle Scholar
Conway, S.L., Shinbrot, T. & Glasser, B.J. 2004 A Taylor vortex analogy in granular flows. Nature 43, 433437.CrossRefGoogle Scholar
Couette, M.M. 1890 Études sur le frottement des liquides. In Annales de chimie et de physique, vol. 6–21, pp. 433–510. G. Masson.Google Scholar
Coussot, P. 2005 Rheometry of Pastes, Suspensions, and Granular Materials. Wiley.CrossRefGoogle Scholar
Czarny, O., Serre, E., Bontoux, P. & Lueptow, R.M. 2003 Interaction between ekman pumping and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15 (3), 467477.CrossRefGoogle Scholar
Dash, A., Anantharaman, A. & Poelma, C. 2020 Particle-laden Taylor–Couette flows: higher-order transitions and evidence of azimuthally localized wavy vortices. J. Fluid Mech. 903, A20.CrossRefGoogle Scholar
Davidson, F., Cliff, R. & Harrison, D. 1985 Fluidization. Academic Press.Google Scholar
Deng, R., Arifin, D.Y., Mak, Y.C. & Wang, C.-H. 2009 Characterization of Taylor vortex flow in a short liquid column. Am. Inst. Chem. Engrs 55 (12), 30563065.CrossRefGoogle Scholar
Deng, R., Arifin, D.Y., Mak, Y.C. & Wang, C.H. 2010 Taylor vortex flow in presence of internal baffles. Chem. Engng Sci. 65 (16), 45984605.CrossRefGoogle Scholar
Donnelly, R.J. & Fultz, D. 1960 Experiments on the stability of viscous flow between rotating cylinders II. Visual observations. Proc. R. Soc. Lond. Ser. A 258, 101123.Google Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.CrossRefGoogle Scholar
Einstein, A. 1906 Calculation of the viscosity-coefficient of a liquid in which a large number of small spheres are suspended in irregular distribution. Ann. Phys. 19, 286306.Google Scholar
Einstein, A. 1926 Investigations on the Theory of Brownian Movement. Dover.Google Scholar
Esser, A. & Grossman, S. 1996 Analytical expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141818.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
Gibilaro, L.G., Gallucci, K., Felice, R.D. & Pagliani, P. 2007 On the apparent viscosity of a fluidized bed. Chem. Engng Sci. 62, 294300.CrossRefGoogle Scholar
Gu, Y., Chialvo, S. & Sundaresan, S. 2014 Rheology of cohesive granular materials across multiple dense-flow regimes. Phys. Rev. E 90, 032206.CrossRefGoogle ScholarPubMed
Gutam, K.J., Mehandia, V. & Nott, P.R. 2013 Rheometry of granular materials in cylindrical Couette cells: anomalous stress caused by gravity and shear. Phys. Fluids 25, 070602.CrossRefGoogle Scholar
Hartig, J., Shetty, A., Conklin, D.R. & Weimer, A.W. 2022 Aeration and cohesive effects on flowability in a vibrating powder conveyor. Powder Technol. 408, 117724.CrossRefGoogle Scholar
Hunt, M.L., Zenit, R., Campbell, C.S. & Brennen, C.E. 2002 Revisiting the 1954 suspension experiments of R.A. Bagnold. J. Fluid Mech. 452, 124.CrossRefGoogle Scholar
Iams, A.D., Gao, M.Z., Shetty, A. & Palmer, T.A. 2022 Influence of particle size on powder rheology and effects on mass flow during directed energy deposition additive manufacturing. Powder Technol. 396, 316326.CrossRefGoogle Scholar
Jeng, J. & Zhu, K.Q. 2010 Numerical simulation of Taylor Couette flow of bingham fluids. J. Non-Newtonian Fluid Mech. 165 (19), 11611170.CrossRefGoogle Scholar
Joseph, G.G., Zenit, R., Hunt, M.L. & Rosenwilkel, A.M. 2001 Particle-wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Koos, E., Linares-Guerrero, E., Hunt, M.L. & Brennen, C.E. 2012 Rheological measurements of large particles in high shear rate flows. Phys. Fluids 24 (1), 013302.CrossRefGoogle Scholar
Kostynick, R., Matinpour, H., Pradeep, S., Haber, S., Sauret, A., Meiburg, E., Dunne, T., Arratia, P. & Jerolmack, D. 2022 Rheology of debris flow materials is controlled by the distance from jamming. Proc. Natl Acad. Sci. 119 (44), e2209109119.CrossRefGoogle ScholarPubMed
Koval, G., Roux, J.N., Corfdir, A. & Chevoir, R. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E Stat. Nonlinear Soft Matt. Phys. 79 (2), 021306.CrossRefGoogle ScholarPubMed
Krieger, I.M. 1972 Rheology of monodisperse latices. Adv. Colloid Interface Sci. 3, 111135.CrossRefGoogle Scholar
Krieger, I.M. & Dougherty, T.J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid-spheres. Trans. Soc. Rheol. 3, 137152.CrossRefGoogle Scholar
Krishnaraj, K.P. & Nott, P.R. 2016 A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly. Nat. Commun. 7, 10630.CrossRefGoogle ScholarPubMed
Landry, M.P., Frigaard, I.A. & Martinez, D.M. 2006 Stability and instability of Taylor–Couette flows of a bingham fluid. J. Fluid Mech. 560, 321353.CrossRefGoogle Scholar
Larson, R.G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Leighton, D. & Acrivos, A. 1986 Viscous resuspension. Chem. Engng Sci. 41 (6), 13771384.CrossRefGoogle Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181 (1), 415439.CrossRefGoogle Scholar
Lewis, G.S. & Swinney, H.L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59 (5), 54575467.CrossRefGoogle ScholarPubMed
Linares-Guerrero, E., Hunt, M.L. & Zenit, R. 2017 Effects of inertia and turbulence on rheological measurements of neutrally buoyant suspensions. J. Fluid Mech. 811, 525543.CrossRefGoogle Scholar
Lu, E., Brodsky, E.E. & Kavehpour, H.P. 2007 Shear-weakening of the transitional regime for granular flow. J. Fluid Mech. 587, 347372.CrossRefGoogle Scholar
Mahbubul, I.M, Saidur, R. & Amalina, M.A. 2012 Latest developments on the viscosity of nanofluids. Intl J. Heat Mass Transfer 55, 874885.CrossRefGoogle Scholar
Majji, M.V., Banerjee, S. & Morris, J.F. 2018 Inertial flow transitions of a suspension in Taylor–Couette geometry. J. Fluid Mech. 835, 936969.CrossRefGoogle Scholar
Mallock, A. 1896 Experiments on fluid viscosity. Phil. Trans. R. Soc. Lond. A 183, 4156.Google Scholar
Masuda, H., Horie, T., Hubacz, R., Ohta, M. & Ohmura, N. 2016 Prediction of onset of Taylor–Couette instability for shear-thinning fluids. Rheol. Acta 56 (2), 7384.CrossRefGoogle Scholar
Matas, J.-P., Morris, J.F. & Guazzelli, E. 2003 Transition to turbulence in particulate pipe flow. Phys. Rev. Lett. 90 (1), 014501.CrossRefGoogle ScholarPubMed
Mendoza, C.I. 2017 A simple semiemperical model for the effective viscosity of multicomponent suspensions. Rheol. Acta 56 (5), 113.CrossRefGoogle Scholar
Mishra, I., Liu, P., Shetty, A. & Hrenya, C.M. 2020 On the use of a powder rheometer to probe defluidization of cohesive powders. Chem. Engng Sci. 214, 115422.CrossRefGoogle Scholar
Mishra, I., Molnar, M.J., Hwang, M.Y., Shetty, A. & Hrenya, C.M. 2022 Experimental validation of the extraction of a particle-particle cohesion model (square-force) from simple bulk measurements (defluidization in a rheometer). Chem. Engng Sci. 259, 117782.CrossRefGoogle Scholar
Mueller, S., Llewellin, E.W. & Mader, H.M. 2010 The rheology of suspensions of solid particles. Proc. R. Soc. Lond. A 466, 12011228.Google Scholar
Nedderman, R.M. 1992 Statics and Kinematics of Granular Materials. Cambridge University Press.CrossRefGoogle Scholar
Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L. & Abbott, J.R. 1992 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4, 3040.CrossRefGoogle Scholar
Racina, A. & Kind, M. 2006 Specific power input and local micromixing times in turbulent Taylor–Couette flow. Exp. Fluids 41, 513522.CrossRefGoogle Scholar
Ramaraju, H., Landry, A.M., Sashidharan, S., Shetty, A., Crotts, S.J., Maher, K.O., Goudy, S.L. & Hollister, S.J. 2022 Clinical grade manufacture of 3d printed patient specific biodegradable devices for pediatric airway support. Biomaterials 289, 121702.CrossRefGoogle ScholarPubMed
Ramesh, P., Bharadwaj, S. & Alam, M. 2019 Suspension Taylor–Couette flow: co-existence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals. J. Fluid Mech. 870, 253257.CrossRefGoogle Scholar
Ravelet, R., Delfos, R. & Westerweel, J. 2010 Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor–Couette flow. Phys. Fluids 22, 055103.CrossRefGoogle Scholar
Rees, A.C., Davidson, J.F., Dennis, J.S. & Hayhurst, A.N. 2005 The rise of a buoyant sphere in a gas-fluidized bed. Chem. Engng Sci. 60, 11431153.CrossRefGoogle Scholar
Singh, S.P., Ghosh, M. & Alam, M. 2022 Counter-rotating suspension: pattern transition, flow multiplicity and the spectral evolution. J. Fluid Mech. 944, A18.CrossRefGoogle Scholar
Snyder, H.A. 1968 a Stability of rotating Couette flow. I. Asymmetric waveforms. Phys. Fluids 11 (4), 728734.CrossRefGoogle Scholar
Snyder, H.A. 1968 b Stability of rotating Couette flow. II. Comparison with numerical results. Phys. Fluids 11 (8), 15991605.CrossRefGoogle Scholar
Snyder, H.A. 1969 Change in wave-form and mean flow associated with wavelength variations in rotating Couette flow. Part 1. J. Fluid Mech. 35 (2), 337352.CrossRefGoogle Scholar
Tardos, G.I., Khan, M.I. & Schaeffer, D.G. 1998 Forces on a slowly rotating, rough cylinder in a Couette device containing a dry, frictional powder. Phys. Fluids 10, 335341.CrossRefGoogle Scholar
Taylor, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. Ser. A 223, 289343.Google Scholar