Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-25T15:43:18.273Z Has data issue: false hasContentIssue false

Fingering convection in a spherical shell

Published online by Cambridge University Press:  04 June 2024

Théo Tassin
Affiliation:
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
Thomas Gastine*
Affiliation:
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
Alexandre Fournier
Affiliation:
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
*
Email address for correspondence: gastine@ipgp.fr

Abstract

We use $123$ three-dimensional direct numerical simulations to study fingering convection in non-rotating spherical shells. We investigate the scaling behaviour of the flow length scale, the non-dimensional heat and compositional fluxes $Nu$ and $Sh$ and the mean convective velocity over the fingering convection instability domain defined by $1 \leq R_\rho < Le$, $R_\rho$ being the ratio of density perturbations of thermal and compositional origins and $Le$ the Lewis number. We show that the chemical boundary layers are marginally unstable and adhere to the laminar Prandtl–Blasius model, hence explaining the asymmetry between the inner and outer spherical shell boundary layers. We develop scaling laws for two asymptotic regimes close to the two edges of the instability domain, namely $R_\rho \lesssim Le$ and $R_\rho \gtrsim 1$. For the former, we develop novel power laws of a small parameter $\epsilon$ measuring the distance to onset, which differ from theoretical laws published to date in Cartesian geometry. For the latter, we find that the Sherwood number $Sh$ gradually approaches a scaling $Sh\sim Ra_\xi ^{1/3}$ when $Ra_\xi \gg 1$; and that the Péclet number accordingly follows $Pe \sim Ra_\xi ^{2/3} |Ra_T|^{-1/4}$, $Ra_T$ and $Ra_{\xi}$ being the thermal and chemical Rayleigh numbers. When the Reynolds number exceeds a few tens, we report on a secondary instability which takes the form of large-scale toroidal jets which span the entire spherical domain. Jets distort the fingers, resulting in Reynolds stress correlations, which in turn feed the jet growth until saturation. This nonlinear phenomenon can yield relaxation oscillation cycles.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ascher, U.M., Ruuth, S.J. & Spiteri, R.J. 1997 Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Maths 25 (2–3), 151167.CrossRefGoogle Scholar
Backus, G.E., Parker, R. & Constable, C.G. 1996 Foundations of Geomagnetism. Cambridge University Press.Google Scholar
Baines, P.G. & Gill, A.E. 1969 On thermohaline convection with linear gradients. J. Fluid Mech. 37 (2), 289306.CrossRefGoogle Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50 (1), 269279.CrossRefGoogle ScholarPubMed
Boscarino, S., Pareschi, L. & Russo, G. 2013 Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35 (1), A22A51.CrossRefGoogle Scholar
Boyd, J.P. 2001 Chebyshev and Fourier Spectral Methods: Second Revised Edition. Courier Corporation.Google Scholar
Breuer, M., Manglik, A., Wicht, J., Trümper, T., Harder, H. & Hansen, U. 2010 Thermochemically driven convection in a rotating spherical shell. Geophys. J. Intl 183, 150162.CrossRefGoogle Scholar
Brown, J.M., Garaud, P. & Stellmach, S. 2013 Chemical transport and spontaneous layer formation in fingering convection in astrophysics. Astrophys. J. 768 (1), 34.CrossRefGoogle Scholar
Christensen, U.R. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 97114.CrossRefGoogle Scholar
Christensen, U.R. & Wicht, J. 2015 Numerical dynamo simulations. In Treatise on Geophysics (ed. P. Olson), 2nd edn, vol. 8: Core Dynamics, pp. 245–282. Elsevier.CrossRefGoogle Scholar
Deschamps, F., Tackley, P.J. & Nakagawa, T. 2010 Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry. Geophys. J. Intl 182, 137154.Google Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 50 (1), 275298.CrossRefGoogle Scholar
Garaud, P. & Brummell, N. 2015 2D or not 2D: the effect of dimensionality on the dynamics of fingering convection at low Prandtl number. Astrophys. J. 815 (1), 42.CrossRefGoogle Scholar
Garaud, P., Medrano, M., Brown, J.M., Mankovich, C. & Moore, K. 2015 Excitation of gravity waves by fingering convection, and the formation of compositional staircases in stellar interiors. Astrophys. J. 808 (1), 89.CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aurnou, J.M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.CrossRefGoogle Scholar
Glatzmaier, G.A. 1984 Numerical simulations of stellar convective dynamos. I – the model and method. J. Comput. Phys. 55, 461484.CrossRefGoogle Scholar
Goluskin, D., Johnston, H., Flierl, G.R. & Spiegel, E.A. 2014 Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360385.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Guervilly, C. 2022 Fingering convection in the stably stratified layers of planetary cores. J. Geophys. Res.: Planet. 127 (11), e2022JE007350.CrossRefGoogle Scholar
Hage, E. & Tilgner, A. 2010 High Rayleigh number convection with double diffusive fingers. Phys. Fluids 22 (7), 076603.CrossRefGoogle Scholar
Hauck, S.A., Dombard, A.J., Phillips, R.J. & Solomon, S.C. 2004 Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222 (3), 713728.CrossRefGoogle Scholar
Holyer, J.Y. 1984 The stability of long, steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.CrossRefGoogle Scholar
Hunter, J.D. 2007 Matplotlib: a 2D graphics environment. Comput. Sci. Engng 9 (3), 9095.CrossRefGoogle Scholar
Jarvis, G.T. 1993 Effects of curvature on two-dimensional models of mantle convection – cylindrical polar coordinates. J. Geophys. Res. 98, 44774485.CrossRefGoogle Scholar
Julien, K., Rubio, A.M., Grooms, I. & Knobloch, E. 2012 Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.CrossRefGoogle Scholar
King, E.M., Stellmach, S. & Aurnou, J.M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
Kunze, E. 1987 Limits on growing, finite-length salt fingers: a Richardson number constraint. J. Mar. Res. 45 (3), 533556.CrossRefGoogle Scholar
Labrosse, S. 2015 Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. 247, 3655.CrossRefGoogle Scholar
Lago, R., Gastine, T., Dannert, T., Rampp, M. & Wicht, J. 2021 MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry. Geosci. Model Develop. 14 (12), 74777495.CrossRefGoogle Scholar
Liu, C., Julien, K. & Knobloch, E. 2022 Staircase solutions and stability in vertically confined salt-finger convection. J. Fluid Mech. 952, A4.CrossRefGoogle Scholar
Long, R.S., Mound, J.E., Davies, C.J. & Tobias, S.M. 2020 Thermal boundary layer structure in convection with and without rotation. Phys. Rev. Fluids 5 (11), 113502.CrossRefGoogle Scholar
Malkus, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.Google Scholar
Mankovich, C.R. & Fortney, J.J. 2020 Evidence for a dichotomy in the interior structures of Jupiter and Saturn from helium phase separation. Astrophys. J. 889 (1), 51.CrossRefGoogle Scholar
Monville, R., Vidal, J., Cébron, D. & Schaeffer, N. 2019 Rotating convection in stably-stratified planetary cores. Geophys. J. Intl 219 (Supplement_1), S195S218.CrossRefGoogle Scholar
Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. 2016 Experimental determination of the electrical resistivity of iron at Earth's core conditions. Nature 534 (7605), 9598.CrossRefGoogle ScholarPubMed
Oruba, L. 2016 On the role of thermal boundary conditions in dynamo scaling laws. Geophys. Astrophys. Fluid Dyn. 110 (6), 529545.CrossRefGoogle Scholar
Paparella, F. & Spiegel, E.A. 1999 Sheared salt fingers: instability in a truncated system. Phys. Fluids 11 (5), 11611168.CrossRefGoogle Scholar
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. 2012 Thermal and electrical conductivity of iron at Earth's core conditions. Nature 485, 355358.CrossRefGoogle ScholarPubMed
Priestley, C.H.B. 1954 Convection from a large horizontal surface. Austral. J. Phys. 7, 176.CrossRefGoogle Scholar
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.CrossRefGoogle Scholar
Radko, T. 2010 Equilibration of weakly nonlinear salt fingers. J. Fluid Mech. 645, 121143.CrossRefGoogle Scholar
Radko, T. 2013 Double-Diffusive Convection. Cambridge University Press.CrossRefGoogle Scholar
Radko, T. & Smith, D.P. 2012 Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692, 527.CrossRefGoogle Scholar
Radko, T. & Stern, M.E. 2000 Finite-amplitude salt fingers in a vertically bounded layer. J. Fluid Mech. 425, 133160.CrossRefGoogle Scholar
Roberts, P.H. & King, E.M. 2013 On the genesis of the Earth's magnetism. Rep. Prog. Phys. 76, 096801.CrossRefGoogle ScholarPubMed
Rosenthal, A., Lüdemann, K. & Tilgner, A. 2022 Staircase formation in unstably stratified double diffusive finger convection. Phys. Fluids 34 (11), 116605.CrossRefGoogle Scholar
Schaeffer, N. 2013 Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14 (3), 751758.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2018 Boundary-Layer Theory, 9th edn. Springer.Google Scholar
Schmitt, R.W. 1979 a Flux measurements on salt fingers at an interface. J. Mar. Res. 37 (3), 419436.Google Scholar
Schmitt, R.W. 1979 b The growth rate of super-critical salt fingers. Deep-Sea Res. 26 (1), 2340.CrossRefGoogle Scholar
Shen, C.Y. 1995 Equilibrium salt-fingering convection. Phys. Fluids 7 (4), 706717.CrossRefGoogle Scholar
Silva, L., Mather, J.F. & Simitev, R.D. 2019 The onset of thermo-compositional convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 113 (4), 377404.CrossRefGoogle Scholar
Smyth, W.D. & Kimura, S. 2007 Instability and diapycnal momentum transport in a double-diffusive, stratified shear layer. J. Phys. Oceanogr. 37 (6), 15511565.CrossRefGoogle Scholar
Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech. 677, 554571.CrossRefGoogle Scholar
Stern, M.E. 1960 The “salt-fountain” and thermohaline convection. Tellus 12 (2), 172175.CrossRefGoogle Scholar
Stern, M.E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35 (2), 209218.CrossRefGoogle Scholar
Stern, M.E. 1975 Thermohaline convection. In Ocean Circulation Physics, International Geophysics, vol. 19, chap. 11. Academic.Google Scholar
Stern, M.E. & Radko, T. 1998 The salt finger amplitude in unbounded T-S gradient layers. J. Mar. Res. 56 (1), 157196.CrossRefGoogle Scholar
Stern, M.E. & Simeonov, J. 2005 The secondary instability of salt fingers. J. Fluid Mech. 533, 361380.CrossRefGoogle Scholar
Taylor, J. & Bucens, P. 1989 Laboratory experiments on the structure of salt fingers. Deep-Sea Res. 36 (11), 16751704.CrossRefGoogle Scholar
Taylor, J. & Veronis, G. 1996 Experiments on double-diffusive sugar–salt fingers at high stability ratio. J. Fluid Mech. 321, 315333.CrossRefGoogle Scholar
Thyng, K., Greene, C., Hetland, R., Zimmerle, H. & DiMarco, S. 2016 True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29 (3), 913.CrossRefGoogle Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47 (4), R2253.CrossRefGoogle ScholarPubMed
Traxler, A., Garaud, P. & Stellmach, S. 2011 a Numerically determined transport laws for fingering (thermohaline) convection in astrophysics. Astrophys. J. 728 (2), L29.CrossRefGoogle Scholar
Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummell, N. 2011 b Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.CrossRefGoogle Scholar
Turner, J.S. 1967 Salt fingers across a density interface. Deep-Sea Res. 14 (5), 599611.Google Scholar
Turner, J.S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Valdettaro, L., Rieutord, M., Braconnier, T. & Frayssé, V. 2007 Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm. J. Comput. Appl. Maths 205 (1), 382393.CrossRefGoogle Scholar
Vangelov, V.I. & Jarvis, G.T. 1994 Geometrical effects of curvature in axisymmetric spherical models of mantle convection. J. Geophys. Res. 99, 93459358.CrossRefGoogle Scholar
Veronis, G. 1965 On finite amplitude instability in thermohaline convection. J. Mar. Res. 23 (1), 117.Google Scholar
Wardinski, I., Amit, H., Langlais, B. & Thébault, E. 2021 The internal structure of Mercury's core inferred from magnetic observations. J. Geophys. Res.: Planet. 126 (12), e06792.CrossRefGoogle Scholar
Wicht, J. 2002 Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132 (4), 281302.CrossRefGoogle Scholar
Xie, J.-H., Julien, K. & Knobloch, E. 2019 Jet formation in salt-finger convection: a modified Rayleigh–Bénard problem. J. Fluid Mech. 858, 228263.CrossRefGoogle Scholar
Xie, J.-H., Miquel, B., Julien, K. & Knobloch, E. 2017 A reduced model for salt-finger convection in the small diffusivity ratio limit. Fluids 2 (1), 6.CrossRefGoogle Scholar
Yang, Y. 2020 Double diffusive convection in the finger regime for different Prandtl and Schmidt numbers. Acta Mechanica Sin. 36 (4), 797804.CrossRefGoogle Scholar
Yang, Y., Chen, W., Verzicco, R. & Lohse, D. 2020 Multiple states and transport properties of double-diffusive convection turbulence. Proc. Natl Acad. Sci. USA 117 (26), 1467614681.CrossRefGoogle ScholarPubMed
Yang, Y., van der Poel, E.P., Ostilla-Mónico, R., Sun, C., Verzicco, R., Grossmann, S. & Lohse, D. 2015 Salinity transfer in bounded double diffusive convection. J. Fluid Mech. 768, 476491.CrossRefGoogle Scholar
Yang, Y., Verzicco, R. & Lohse, D. 2016 Scaling laws and flow structures of double diffusive convection in the finger regime. J. Fluid Mech. 802, 667689.CrossRefGoogle Scholar