Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-24T22:58:49.504Z Has data issue: false hasContentIssue false

Experiments on symmetry breaking of azimuthal combustion instabilities and their analysis combining acoustic energy balance and flame describing functions

Published online by Cambridge University Press:  23 April 2024

V. Latour*
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette CEDEX, France
D. Durox
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette CEDEX, France
A. Renaud
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette CEDEX, France
S. Candel
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette CEDEX, France
*
Email address for correspondence: veranika.latour@centralesupelec.fr

Abstract

Combustion instabilities in annular systems raise fundamental issues that are also of practical importance to aircraft engines and ground-based gas turbine combustors. Recent studies indicate that the injector plays a significant role in the stability of combustors by defining the flame dynamical response and setting the inlet impedance of the system. The present investigation examines the effects of combinations of injectors of two different types ($U$ and $S$) on thermoacoustic instabilities in a laboratory-scale annular combustor and compares different circumferential staging strategies. The combustor operates in a stable fashion when all injection units belong to the $S$-family, but exhibits large amplitude pressure oscillations when all these units are of the $U$-type. When the system comprises a mix of $U$- and $S$-injectors, it is possible to determine the number of $S$-injectors leading to stable operation. For a fixed proportion of $U$- and $S$-injectors, some arrangements give rise to stable operation while others do not. Results also show that introducing symmetry-breaking elements affects the system's modal dynamics. These experimental observations are interpreted in an acoustic energy balance framework used to derive an expression for the growth rate as a function of the describing functions of the flames formed by the different injectors and their respective azimuthal locations. Growth rates are determined for the different configurations and used to explain the various observations, estimate the system damping rate and predict the location of the nodal line when the standing mode prevails.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, J.G., Dawson, J.R., Schuller, T., Durox, D., Prieur, K. & Candel, S. 2021 Locking of azimuthal modes by breaking the symmetry in annular combustors. Combust. Flame 234, 111639.CrossRefGoogle Scholar
Bauerheim, M., Cazalens, M. & Poinsot, T. 2015 A theoretical study of mean azimuthal flow and asymmetry effects on thermo-acoustic modes in annular combustors. Proc. Combust. Inst. 35 (3), 32193227.CrossRefGoogle Scholar
Bauerheim, M., Ndiaye, A., Constantine, P., Moreau, S. & Nicoud, F. 2016 Symmetry breaking of azimuthal thermoacoustic modes: the UQ perspective. J. Fluid Mech. 789, 534566.CrossRefGoogle Scholar
Bauerheim, M., Salas, P., Nicoud, F. & Poinsot, T. 2014 Symmetry breaking of azimuthal thermo-acoustic modes in annular cavities: a theoretical study. J. Fluid Mech. 760, 431465.CrossRefGoogle Scholar
Bothien, M.R., Noiray, N. & Schuermans, B. 2015 Analysis of azimuthal thermo-acoustic modes in annular gas turbine combustion chambers. Trans. ASME J. Engng Gas Turbines Power 137 (6), 061505.CrossRefGoogle Scholar
Boujo, E., Denisov, A., Schuermans, B. & Noiray, N. 2016 Quantifying acoustic damping using flame chemiluminescence. J. Fluid Mech. 808, 245257.CrossRefGoogle Scholar
Bourgouin, J.-F., Durox, D., Moeck, J.P., Schuller, T. & Candel, S. 2013 Self-sustained instabilities in an annular combustor coupled by azimuthal and longitudinal acoustic modes. In Proceedings of ASME Turbo Expo. 2013. Paper GT2013-95010. ASME.CrossRefGoogle Scholar
Campa, G. & Camporeale, S.M. 2014 Prediction of the thermoacoustic combustion instabilities in practical annular combustors. Trans. ASME J. Engng Gas Turbines Power 136 (9), 091504.CrossRefGoogle Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29 (1), 128.CrossRefGoogle Scholar
Dawson, J.R. & Worth, N.A. 2015 The effect of baffles on self-excited azimuthal modes in an annular combustor. Proc. Combust. Inst. 35 (3), 32833290.CrossRefGoogle Scholar
Dowling, A.P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Durox, D., Prieur, K., Schuller, T. & Candel, S. 2015 Different flame patterns linked with swirling injector interactions in an annular combustor. In Proceedings of ASME Turbo Expo. 2015. Paper GT2015-42034. ASME.CrossRefGoogle Scholar
Durox, D., Schuller, T. & Candel, S. 2002 Self-induced instability of a premixed jet flame impinging on a plate. Proc. Combust. Inst. 29 (1), 6975.CrossRefGoogle Scholar
Durox, D., Schuller, T., Noiray, N., Birbaud, A.L. & Candel, S. 2009 Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames. Combust. Flame 156, 106119.CrossRefGoogle Scholar
Evesque, S. & Polifke, W. 2002 Low-order acoustic modelling for annular combustors: validation and inclusion of modal coupling. In Proceedings of ASME Turbo Expo. 2002. Paper GT2002-30064. ASME.CrossRefGoogle Scholar
Evesque, S., Polifke, W. & Pankiewitz, C. 2003 Spinning and azimuthally standing acoustic modes in annular combustors. Proceedings of the 9th AA/CEAS Aeroacoustics Conference and Exhibit. AIAA Paper 2003-3182.CrossRefGoogle Scholar
Fanaca, D., Alemela, P., Ettner, F., Hirsch, C., Sattelmayer, T. & Schuermans, B. 2008 Determination and comparison of the dynamic characteristics of a perfectly premixed flame in both single and annular combustion chambers. In Proceedings of ASME Turbo Expo. 2008. Paper GT2008-50781. ASME.CrossRefGoogle Scholar
Faure-Beaulieu, A. & Noiray, N. 2020 Symmetry breaking of azimuthal waves: slow-flow dynamics on the Bloch sphere. Phys. Rev. Fluids 5 (2), 023201.CrossRefGoogle Scholar
Fischer, A., Hirsch, C. & Sattelmayer, T. 2006 Comparison of multi-microphone transfer matrix measurements with acoustic network models of swirl burners. J. Sound Vib. 298, 7383.CrossRefGoogle Scholar
Ghirardo, G. & Bothien, M.R. 2018 Quaternion structure of azimuthal instabilities. Phys. Rev. Fluids 3 (11), 113202.CrossRefGoogle Scholar
Ghirardo, G., Ćosić, B., Juniper, M.P. & Moeck, J.P. 2015 State-space realization of a describing function. Nonlinear Dyn. 82 (1), 928.CrossRefGoogle Scholar
Ghirardo, G. & Juniper, M.P. 2013 Azimuthal instabilities in annular combustors: standing and spinning modes. Proc. R. Soc. Lond. A 469 (2157), 20130232.Google Scholar
Ghirardo, G., Nygård, H.T., Cuquel, A. & Worth, N.A. 2021 Symmetry breaking modelling for azimuthal combustion dynamics. Proc. Combust. Inst. 38 (4), 59535962.CrossRefGoogle Scholar
Han, X., Li, J. & Morgans, A.S. 2015 Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combust. Flame 162 (10), 36323647.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2005 Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc. Combust. Inst. 30, 17751782.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35 (4), 293364.CrossRefGoogle Scholar
Humbert, S.C., Moeck, J.P., Orchini, A. & Paschereit, C.O. 2021 Effect of an azimuthal mean flow on the structure and stability of thermoacoustic modes in an annular combustor model with electroacoustic feedback. Trans. ASME J. Engng Gas Turbines Power 143 (6), 061026.CrossRefGoogle Scholar
Humbert, S.C., Moeck, J.P., Paschereit, C.O. & Orchini, A. 2023 Symmetry-breaking in thermoacoustics: theory and experimental validation on an annular system with electroacoustic feedback. J. Sound Vib. 548, 117376.CrossRefGoogle Scholar
Indlekofer, T., Ahn, B., Kwah, Y.H., Wiseman, S., Mazur, M., Dawson, J.R. & Worth, N.A. 2021 The effect of hydrogen addition on the amplitude and harmonic response of azimuthal instabilities in a pressurized annular combustor. Combust. Flame 228, 375387.CrossRefGoogle Scholar
Indlekofer, T., Faure-Beaulieu, A., Dawson, J.R. & Noiray, N. 2022 Spontaneous and explicit symmetry breaking of thermoacoustic eigenmodes in imperfect annular geometries. J. Fluid Mech. 944, A15.CrossRefGoogle Scholar
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. Trans. ASME J. Engng Gas Turbines Power 132 (6), 061503.CrossRefGoogle Scholar
Kopitz, J., Huber, A., Sattelmayer, T. & Polifke, W. 2005 Thermoacoustic stability analysis of an annular combustion chamber with acoustic low order modeling and validation against experiment. In Proceedings of ASME Turbo Expo. 2005. Paper GT2005-68797. ASME.CrossRefGoogle Scholar
Krebs, W., Flohr, P., Prade, B. & Hoffmann, S. 2002 Thermoacoustic stability chart for high-intensity gas turbine combustion systems. Combust. Sci. Technol. 174 (7), 99128.CrossRefGoogle Scholar
Latour, V., Durox, D., Rajendram Soundararajan, P., Renaud, A. & Candel, S. 2023 Effects of fuel composition on azimuthal combustion instabilities in an annular combustor equipped with spray injectors. In Proceedings of ASME Turbo Expo. 2023. Paper GT2023-101370. ASME.CrossRefGoogle Scholar
Latour, V., Rajendram Soundararajan, P., Durox, D., Renaud, A. & Candel, S. 2024 Assessing transfer matrix models and measurements using acoustic energy conservation principles. Trans. ASME J. Engng Gas Turbines Power 146 (1), 011021.CrossRefGoogle Scholar
Mazur, M., Nygård, H.T., Dawson, J.R. & Worth, N.A. 2019 Characteristics of self-excited spinning azimuthal modes in an annular combustor with turbulent premixed bluff-body flames. Proc. Combust. Inst. 37 (4), 51295136.CrossRefGoogle Scholar
Mensah, G.A., Magri, L., Orchini, A. & Moeck, J.P. 2019 Effects of asymmetry on thermoacoustic modes in annular combustors: a higher-order perturbation study. Trans. ASME J. Engng Gas Turbines Power 141 (4), 041030.CrossRefGoogle Scholar
Moeck, J.P., Paul, M. & Paschereit, C.O. 2010 Thermoacoustic instabilities in an annular Rijke tube. In Proceedings of ASME Turbo Expo. 2010. Paper GT2010-23577. ASME.CrossRefGoogle Scholar
Munjal, M.L. & Doige, A.G. 1990 Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element. J. Sound Vib. 141 (2), 323333.CrossRefGoogle Scholar
Noiray, N., Bothien, M. & Schuermans, B. 2011 Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theory Model. 15 (5), 585606.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Noiray, N. & Schuermans, B. 2013 On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. Lond. A 469 (2151), 20120535.Google Scholar
Orchini, A., Illingworth, S.J. & Juniper, M.P. 2015 Frequency domain and time domain analysis of thermoacoustic oscillations with wave-based acoustics. J. Fluid Mech. 775, 387414.CrossRefGoogle Scholar
Paliès, P., Durox, D., Schuller, T. & Candel, S. 2011 Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 158 (10), 19801991.CrossRefGoogle Scholar
Pankiewitz, C. & Sattelmayer, T. 2003 Time domain simulation of combustion instabilities in annular combustors. Trans. ASME J. Engng Gas Turbines Power 125 (3), 677685.CrossRefGoogle Scholar
Parmentier, J.-F., Salas, P., Wolf, P., Staffelbach, G., Nicoud, F. & Poinsot, T. 2012 A simple analytical model to study and control azimuthal instabilities in annular combustion chambers. Combust. Flame 159 (7), 23742387.CrossRefGoogle Scholar
Patat, C., Baillot, F., Blaisot, J.-B. & Domingues, E. 2021 Responses of lean swirling spray flames to acoustic pressure and transverse velocity perturbations. In Proceedings of the Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2021), Munich.Google Scholar
Poinsot, T. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1), 128.CrossRefGoogle Scholar
Prieur, K., Durox, D., Schuller, T. & Candel, S. 2017 A hysteresis phenomenon leading to spinning or standing azimuthal instabilities in an annular combustor. Combust. Flame 175, 283291.CrossRefGoogle Scholar
Rajendram Soundararajan, P., Durox, D., Renaud, A. & Candel, S. 2022 a Azimuthal instabililities of an annular combustor with different swirling injectors. Trans. ASME J. Engng Gas Turbines Power 144 (11), 111018.CrossRefGoogle Scholar
Rajendram Soundararajan, P., Durox, D., Renaud, A., Vignat, G. & Candel, S. 2022 b Swirler effects on combustion instabilities analyzed with measured FDFs, injector impedances and damping rates. Combust. Flame 238, 011016.CrossRefGoogle Scholar
Rajendram Soundararajan, P., Vignat, G., Durox, D., Renaud, A. & Candel, S. 2021 Effect of different fuels on combustion instabilities in an annular combustor. Trans. ASME J. Engng Gas Turbines Power 143 (3), 031007.CrossRefGoogle Scholar
Schuermans, B., Guethe, F., Pennell, D., Guyot, D. & Paschereit, C.O. 2010 Thermoacoustic modeling of a gas turbine using transfer functions measured under full engine pressure. Trans. ASME J. Engng Gas Turbines Power 132 (11), 111503.CrossRefGoogle Scholar
Schuller, T., Durox, D., Palies, P & Candel, S. 2012 Acoustic decoupling of longitudinal modes in generic combustion systems. Combust. Flame 159, 19211931.CrossRefGoogle Scholar
Schuller, T., Poinsot, T. & Candel, S. 2020 Dynamics and control of premixed combustion systems based on flame transfer and describing functions. J. Fluid Mech. 894, P1P95.CrossRefGoogle Scholar
Staffelbach, G., Gicquel, L.Y.M., Boudier, G. & Poinsot, T. 2009 Large Eddy Simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32, 29092916.CrossRefGoogle Scholar
Stow, S.R. & Dowling, A.P. 2003 Modelling of circumferential modal coupling due to Helmholtz resonators. In Proceedings of ASME Turbo Expo. 2003. Paper GT2003-38168. ASME.CrossRefGoogle Scholar
Vignat, G. 2020 Injection and combustion dynamics in swirled spray flames and azimuthal coupling in annular combustors. PhD thesis, Université Paris-Saclay, France, pp. 238–248.Google Scholar
Vignat, G., Durox, D., Prieur, K. & Candel, S. 2019 An experimental study into the effect of injector pressure loss on self-sustained combustion instabilities in a swirled spray burner. Proc. Combust. Inst. 37 (4), 52055213.CrossRefGoogle Scholar
Vignat, G., Rajendram Soundararajan, P., Durox, D., Vié, A., Renaud, A. & Candel, S. 2021 A joint experimental and Large Eddy Simulation characterization of the liquid fuel spray in a swirl injector. Trans. ASME J. Engng Gas Turbines Power 143 (8), 081019.CrossRefGoogle Scholar
Wolf, P., Staffelbach, G., Gicquel, L., Müller, J.-D. & Poinsot, T. 2012 Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers. Combust. Flame 159 (11), 33983413.CrossRefGoogle Scholar
Worth, N.A. & Dawson, J.R. 2013 Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. Combust. Flame 160 (11), 24762489.CrossRefGoogle Scholar
Worth, N.A. & Dawson, J.R. 2017 Effect of equivalence ratio on the modal dynamics of azimuthal combustion instabilities. Proc. Combust. Inst. 36 (3), 37433751.CrossRefGoogle Scholar