Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-29T10:43:59.317Z Has data issue: false hasContentIssue false

Experimental study of vortex ring impingement on concave hemispherical cavities

Published online by Cambridge University Press:  24 July 2023

Tanvir Ahmed*
Affiliation:
Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, USA
Byron D. Erath
Affiliation:
Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, USA
*
Email address for correspondence: tanvahm@clarkson.edu

Abstract

Discrete vortex rings impinging on concave hemispherical cavities were explored experimentally. Planar laser-induced fluorescence, two-dimensional particle image velocimetry and flow visualization techniques were employed. Five different ratios of vortex ring to hemisphere cavity radius ($\gamma$) were investigated, namely, $\gamma = 1/4,1/3,2/5,$$1/2, 2/3$. For $\gamma = 1/4,1/3, 2/5$, the geometric confinement of the primary ring due to the hemispherical cavity induced loop-like instabilities in the secondary ring, which led to head-on collision and ejection of the looped ends as they orbited the primary ring. As the hemispherical cavity decreased in diameter (increasing $\gamma$), the dynamics were altered significantly due to the increased generation of vorticity along the edge of the hemisphere. For $\gamma = 1/2$, vorticity produced at the edge/lip of the hemisphere ultimately disrupted the classical formation of a secondary vortex ring from the wall-bounded vorticity. For $\gamma = 2/3$, the primary ring and hemisphere radius were close enough in size that the interaction was dominated by direct impact of the primary ring with the lip of the cavity. The primary vortex ring produced a vortex ring at the lip of the hemisphere that ultimately separated from the cavity, orbited around the primary ring, and then self-advected in the direction opposite to the primary vortex ring trajectory. A detailed investigation of the dynamics provided.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, X., Fultz, H. & Hassanipour, F. 2014 Experimental study of air vortex interaction with porous screens. Spec. Top. Rev. Porous Media 5 (4), 297–309.Google Scholar
Archer, P.J., Thomas, T.G. & Coleman, G.N. 2010 The instability of a vortex ring impinging on a free surface. J. Fluid Mech. 642, 7994.CrossRefGoogle Scholar
Boldes, U. & Ferreri, J.C. 1973 Behavior of vortex rings in the vicinity of a wall. Phys. Fluids 16 (11), 20052006.CrossRefGoogle Scholar
Bourguet, R., Karniadakis, G.E. & Triantafyllou, M.S. 2011 Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. J. Fluids Struct. 27 (5–6), 838847.CrossRefGoogle Scholar
Cerra, A.W. Jr & Smith, C.R. 1983 Experimental observations of vortex ring interaction with the fluid adjacent to a surface. Tech. Rep. Lehigh University, ADA138999.Google Scholar
Cerretelli, C. & Williamson, C.H.K. 2003 The physical mechanism for vortex merging. J. Fluid Mech. 475, 4177.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Lim, T.T. 2014 A numerical study of a vortex ring impacting a permeable wall. Phys. Fluids 26 (10), 103602.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Lim, T.T. 2015 Leapfrogging of multiple coaxial viscous vortex rings. Phys. Fluids 27 (3), 031702.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Luo, L.S. 2010 Numerical study of a vortex ring impacting a flat wall. J. Fluid Mech. 660, 430455.CrossRefGoogle Scholar
Cornaro, C., Fleischer, A.S. & Goldstein, R.J. 1999 Flow visualization of a round jet impinging on cylindrical surfaces. Exp. Therm. Fluid Sci. 20 (2), 6678.CrossRefGoogle Scholar
Costello, J.H., Colin, S.P., Dabiri, J.O., Gemmell, B.J., Lucas, K.N. & Sutherland, K.R. 2021 The hydrodynamics of jellyfish swimming. Annu. Rev. Mar. Sci. 13, 375396.CrossRefGoogle ScholarPubMed
Couch, L.D. & Krueger, P.S. 2011 Experimental investigation of vortex rings impinging on inclined surfaces. Exp. Fluids 51 (4), 11231138.CrossRefGoogle Scholar
Dabiri, J.O., Colin, S.P., Costello, J.H. & Gharib, M. 2005 Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J. Expl Biol. 208 (7), 12571265.CrossRefGoogle ScholarPubMed
Doligalski, T.L., Smith, C.R. & Walker, J.D.A. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26 (1), 573616.CrossRefGoogle Scholar
Dring, R.P. 1982 Sizing criteria for laser anemometry particles. J. Fluids Engng 104, 1517.CrossRefGoogle Scholar
Du, L., Sun, X. & Yang, V. 2016 Generation of vortex lift through reduction of rotor/stator gap in turbomachinery. J. Propul. Power 32 (2), 472485.CrossRefGoogle Scholar
Erath, B.D. & Hemsing, F.S. 2016 Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech. Exp. Fluids 57 (3), 118.CrossRefGoogle Scholar
Fabris, D., Liepmann, D. & Marcus, D. 1996 Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys. Fluids 8 (10), 26402649.CrossRefGoogle Scholar
Faludi, R., Szulik, M., D'hooge, J., Herijgers, P., Rademakers, F., Pedrizzetti, G. & Voigt, J.U. 2010 Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Sur. 139 (6), 15011510.CrossRefGoogle Scholar
Gemmell, B.J., Colin, S.P. & Costello, J.H. 2018 Widespread utilization of passive energy recapture in swimming medusae. J. Expl Biol. 221 (1), jeb168575.Google ScholarPubMed
Gemmell, B.J., Costello, J.H., Colin, S.P., Stewart, C.J., Dabiri, J.O., Tafti, D. & Priya, S. 2013 Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc. Natl Acad. Sci. 110 (44), 1790417909.CrossRefGoogle ScholarPubMed
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Grünwald, A., Korte, J., Wilmanns, N., Winkler, C., Linden, K., Herberg, U., Groß-Hardt, S., Steinseifer, U. & Neidlin, M. 2022 Intraventricular flow simulations in singular right ventricles reveal deteriorated washout and low vortex formation. Cardiovasc. Engng Technol. 13, 495503.CrossRefGoogle ScholarPubMed
Harvey, J.K. & Perry, F.J. 1971 Flowfield produced by trailing vortices in the vicinity of the ground. AIAA J. 9 (8), 16591660.CrossRefGoogle Scholar
Ho, C.M. & Nosseir, N.S. 1979 Large coherent structures in an impinging turbulent jet. In 2nd Symposium on Turbulent Shear Flows, pp. 7–26.Google Scholar
Holmén, V. 2012 Methods for vortex identification. Masters Thesis in Mathematical Sciences. Lund University. Lund, Sweden. http://lup.lub.lu.se/student-papers/record/3241710.Google Scholar
Hoover, A.P., Griffith, B.E. & Miller, L.A. 2017 Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model. J. Fluid Mech. 813, 11121155.CrossRefGoogle Scholar
Hrynuk, J.T., Van, L.J. & Bohl, D. 2012 Flow visualization of a vortex ring interaction with porous surfaces. Phys. Fluids 24 (3), 037103.CrossRefGoogle Scholar
Jianhua, Q., Xiaohai, J., Dong, G., Zeqing, G., Zhihua, C. & Andreopoulos, Y. 2018 Numerical investigation on vortex dipole interacting with concave walls of different curvatures. Fluid Dyn. Res. 50 (4), 045508.CrossRefGoogle Scholar
Kheradvar, A. & Falahatpisheh, A. 2012 The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J. Heart Valve Dis. 21 (2), 225.Google ScholarPubMed
Kolář, V. 2007 Vortex identification: new requirements and limitations. Intl J. Heat Fluid Flow 28 (4), 638652.CrossRefGoogle Scholar
Le, T.B., Elbaz, M.S.M., Van Der Geest, R.J. & Sotiropoulos, F. 2019 High resolution simulation of diastolic left ventricular hemodynamics guided by four-dimensional flow magnetic resonance imaging data. Flow Turbul. Combust. 102, 326.CrossRefGoogle Scholar
Li, Q. & Bruecker, C.H. 2018 Vortex interaction with a rough wall formed by a hexagonal lattice of posts. Phys. Fluids 30 (5), 054107.CrossRefGoogle Scholar
Lim, T.T. 1989 An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7 (7), 453463.CrossRefGoogle Scholar
Lim, T.T., Nickels, T.B. & Chong, M.S. 1991 A note on the cause of rebound in the head-on collision of a vortex ring with a wall. Exp. Fluids 12 (1), 4148.CrossRefGoogle Scholar
Liu, L., Li, X., Liu, N., Hao, P., Zhang, X. & He, F. 2021 The feedback loops of discrete tones in under-expanded impinging jets. Phys. Fluids 33 (10), 106112.CrossRefGoogle Scholar
Markl, M., Kilner, P.J. & Ebbers, T. 2011 Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13, 122.CrossRefGoogle ScholarPubMed
Morris, S. & Williamson, C.H.K. 2016 Impingement of a vortex pair on a wavy wall. In APS DFD Meeting Abstracts, pp. H3–001.Google Scholar
New, T.H., Long, J., Zang, B. & Shi, S. 2020 Collision of vortex rings upon V-walls. J. Fluid Mech. 899, A2.CrossRefGoogle Scholar
New, T.H., Shi, S. & Zang, B. 2016 Some observations on vortex-ring collisions upon inclined surfaces. Exp. Fluids 57 (6), 118.CrossRefGoogle Scholar
Orlandi, P. & Verzicco, R. 1993 Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J. Fluid Mech. 256, 615646.CrossRefGoogle Scholar
Peace, A.J. & Riley, N. 1983 A viscous vortex pair in ground effect. J. Fluid Mech. 129, 409426.CrossRefGoogle Scholar
Peterson, S.D. & Porfiri, M. 2012 Energy exchange between a vortex ring and an ionic polymer metal composite. Appl. Phys. Lett. 100 (11), 114102.CrossRefGoogle Scholar
Pirnia, A., Browning, E.A., Peterson, S.D. & Erath, B.D. 2018 Discrete and periodic vortex loading on a flexible plate; application to energy harvesting and voiced speech production. J. Sound Vib. 433, 476492.CrossRefGoogle Scholar
Pirnia, A., Hu, J., Peterson, S.D. & Erath, B.D. 2017 Vortex dynamics and flow-induced vibrations arising from a vortex ring passing tangentially over a flexible plate. J. Appl. Phys. 122 (16), 164901.CrossRefGoogle Scholar
Pirnia, A., Peterson, S.D. & Erath, B.D. 2021 Temporal response of a flexible cantilevered plate subjected to tangentially-advecting vortex rings: application to energy harvesting systems. J. Fluids Struct. 103, 103284.CrossRefGoogle Scholar
Ren, H. & Lu, X.Y. 2015 Dynamics and instability of a vortex ring impinging on a wall. Comput. Phys. Commun. 18 (4), 11221146.CrossRefGoogle Scholar
Rockwell, D. 1998 Vortex–body interactions. Annu. Rev. Fluid Mech. 30 (1), 199229.CrossRefGoogle Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Saffman, P.G. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths 49 (4), 371380.CrossRefGoogle Scholar
Samaee, M. 2019 Vortex ring propagation in confined spheroidal domains and applications to cardiac flows. PhD thesis, Oklahoma State University.Google Scholar
Sciacchitano, A. & Wieneke, B. 2016 PIV uncertainty propagation. Meas. Sci. Technol. 27 (8), 084006.CrossRefGoogle Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24 (1), 235279.CrossRefGoogle Scholar
Shusser, M., Rosenfeld, M., Dabiri, J.O. & Gharib, M. 2006 Effect of time-dependent piston velocity program on vortex ring formation in a piston/cylinder arrangement. Phys. Fluids 18 (3), 033601.CrossRefGoogle Scholar
Sotiropoulos, F., Le, T.B. & Gilmanov, A. 2016 Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48, 259283.CrossRefGoogle Scholar
Stewart, K.C., Niebel, C.L., Jung, S. & Vlachos, P.P. 2012 The decay of confined vortex rings. Exp. Fluids 53 (1), 163171.CrossRefGoogle Scholar
Syed, A.H. & Sung, H.J. 2009 Propagation of orifice- and nozzle-generated vortex rings in air. J. Vis. 12 (2), 139156.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1994 Normal and oblique collisions of a vortex ring with a wall. Meccanica 29 (4), 383391.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 Wall/vortex-ring interactions. Appl. Mech. Rev. 49 (10), 447–461.CrossRefGoogle Scholar
Walker, J.D.A., Smith, C.R., Cerra, A.W. & Doligalski, T.L. 1987 The impact of a vortex ring on a wall. J. Fluid Mech. 181, 99140.CrossRefGoogle Scholar
Wang, J. & Wan, D. 2020 Application progress of computational fluid dynamic techniques for complex viscous flows in ship and ocean engineering. J. Mar. Sci. Appl. 19 (1), 116.CrossRefGoogle Scholar
Widnall, S.E. & Wolf, T.L. 1980 Effect of tip vortex structure on helicopter noise due to blade–vortex interaction. J. Aircraft 17 (10), 705711.CrossRefGoogle Scholar

Ahmed and Erath Supplementary Movie 1

Vorticity and velocity field of a vortex ring impinging on a flat plate (γ =0).
Download Ahmed and Erath Supplementary Movie 1(Video)
Video 9.3 MB

Ahmed and Erath Supplementary Movie 2

Vorticity and velocity field of a vortex ring impinging on a concave hemispherical surface (γ =1/4, 1/3, and 2/5).

Download Ahmed and Erath Supplementary Movie 2(Video)
Video 14.8 MB

Ahmed and Erath Supplementary Movie 3

Planar laser induced fluorescence flow visualization of the secondary vortex ring development following collision of a primary vortex ring with a concave hemispherical surface (γ =1/4, 1/3, and 2/5).

Download Ahmed and Erath Supplementary Movie 3(Video)
Video 25.2 MB

Ahmed and Erath Supplementary Movie 4

Planar laser induced fluorescence flow visualization of the primary vortex ring impinging on a concave hemispherical surface (γ =1/4, 1/3, and 2/5).

Download Ahmed and Erath Supplementary Movie 4(Video)
Video 24.4 MB

Ahmed and Erath Supplementary Movie 5

Front view of dye flow visualization of the secondary vortex ring development following collision of a primary vortex ring with a concave hemispherical surface (γ =1/4, 1/3, and 2/5).

Download Ahmed and Erath Supplementary Movie 5(Video)
Video 24.8 MB

Ahmed and Erath Supplementary Movie 6

Top view of dye flow visualization of the secondary vortex ring development following collision of a primary vortex ring with a concave hemispherical surface (γ =1/4, 1/3, and 2/5).

Download Ahmed and Erath Supplementary Movie 6(Video)
Video 19.6 MB

Ahmed and Erath Supplementary Movie 7

Vorticity and velocity field of a vortex ring impinging on a concave hemispherical surface (γ =1/2).

Download Ahmed and Erath Supplementary Movie 7(Video)
Video 7.9 MB

Ahmed and Erath Supplementary Movie 8

Vorticity and velocity field of a vortex ring impinging on a concave hemispherical surface (γ =2/3).

Download Ahmed and Erath Supplementary Movie 8(Video)
Video 10 MB
Supplementary material: File

Ahmed and Erath supplementary material

Ahmed and Erath supplementary material 9

Download Ahmed and Erath supplementary material(File)
File 322.9 KB