Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T21:39:31.824Z Has data issue: false hasContentIssue false

Equatorial modons in thermal rotating shallow water model

Published online by Cambridge University Press:  08 April 2024

Noé Lahaye*
Affiliation:
Inria, Odyssey team & IRMAR, Campus Universitaire de Beaulieu, 35042 Rennes, France
Olivier Larroque
Affiliation:
Inria, Odyssey team & IRMAR, Campus Universitaire de Beaulieu, 35042 Rennes, France
Vladimir Zeitlin
Affiliation:
Laboratory of Dynamical Meteorology, Sorbonne University, Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75005 Paris, France
*
Email address for correspondence: noe.lahaye@inria.fr

Abstract

Exact steady eastward-moving vortex-dipole solutions, the equatorial modons, are constructed in the asymptotic limit of low divergence and small temperature variations in the thermal rotating shallow water (TRSW) model on the equatorial beta-plane. This regime is known to be relevant for the tropical atmosphere. The model itself is a generalization, allowing for horizontal temperature gradients, of the classical rotating shallow water model. The asymptotic modons can carry a temperature anomaly and exist also on the inhomogeneous temperature background. The modon configurations are then used to initialize numerical simulations, in order to check whether such coherent structures can exist in the full TRSW model. The results show that this is, indeed, the case. The parameter regimes and limitations on the structure of the temperature anomaly inside, in order for the modons to persist, are established. It is also shown that the modons keep their coherence even while evolving on the background of meridionally inhomogeneous temperature fields, or while interacting with sharp temperature fronts. A general scenario of disaggregation of the modons, if they are out of the stability domain, is exhibited and analysed.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beron-Vera, F.J. 2021 a Multilayer shallow-water model with stratification and shear. Rev. Mex. Fis. 67, 351364.Google Scholar
Beron-Vera, F.J. 2021 b Nonlinear saturation of thermal instabilities. Phys. Fluids 33, 036608.CrossRefGoogle Scholar
Boyd, J. 1985 Equatorial solitary waves. Part 3. Westward traveling modons. J. Phys. Oceanogr. 15, 4654.2.0.CO;2>CrossRefGoogle Scholar
Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. & Brown, B.P. 2020 Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2 (2), 023068.CrossRefGoogle Scholar
Cao, Y., Kurganov, A., Liu, Y. & Zeitlin, V. 2023 Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations. J. Comput. Phys. 474, 111790.CrossRefGoogle Scholar
Charney, J.G. 1963 A note on large-scale motions in the tropics. J. Atmos. Sci. 20, 607609.2.0.CO;2>CrossRefGoogle Scholar
Cho, J.Y.-K., Menou, K.S., Hansen, B.M. & Seager, S. 2008 Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations. Astrophys. J. 675, 817845.CrossRefGoogle Scholar
Fedorov, A.V. & Melville, W.K. 2000 Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr. 30 (7), 16921705.2.0.CO;2>CrossRefGoogle Scholar
Gill, A.E. 1980 Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106 (449), 447462.Google Scholar
Gill, A.E. 1982 Atmosphere-Ocean Dynamics. Academic.Google Scholar
Gouzien, E., Lahaye, N., Zeitlin, V. & Dubos, T. 2017 Thermal instability in rotating shallow water with horizontal temperature/density gradients. Phys. Fluids 29, 101702.CrossRefGoogle Scholar
Holm, D.D., Luesnik, E. & Pan, W. 2021 Stochastic mesoscale circulation dynamics in the thermal ocean. Phys. Fluids 33, 046603.CrossRefGoogle Scholar
Hughes, C.W. & Miller, P.I. 2017 Rapid water transport by long-lasting modon eddy pairs in the Southern midlatitude oceans. Geophys. Res. Lett. 44, 1237512384.CrossRefGoogle Scholar
Kizner, Z., Reznik, G., Fridman, B., Khvoles, R. & McWilliams, J. 2008 Shallow-water modons on the $f$-plane. J. Fluid Mech. 603, 305329.CrossRefGoogle Scholar
Kurganov, A., Liu, Y. & Zeitlin, V. 2020 a Moist-convective thermal rotating shallow water model. Phys. Fluids 32, 066601.CrossRefGoogle Scholar
Kurganov, A., Liu, Y. & Zeitlin, V. 2020 b A well-balanced central-upwind scheme for the thermal rotating shallow water equations. J. Comput. Phys. 411, 109414.CrossRefGoogle Scholar
Kurganov, A., Liu, Y. & Zeitlin, V. 2021 a Interaction of tropical cyclone-like vortices with sea-surface temperature anomalies and topography in a simple shallow-water atmospheric model. Phys. Fluids 33, 106606.CrossRefGoogle Scholar
Kurganov, A., Liu, Y. & Zeitlin, V. 2021 b Numerical dissipation switch for two-dimensional central-upwind schemes. ESAIM Math. Model. Numer. Anal. 55, 713734.CrossRefGoogle Scholar
Lahaye, N. & Zeitlin, V. 2012 Shock modon: A new type of coherent structure in rotating shallow water. Phys. Rev. Lett. 108, 044502.CrossRefGoogle ScholarPubMed
Lahaye, N., Zeitlin, V. & Dubos, T. 2020 Coherent dipoles in a mixed layer with variable buoyancy: theory compared to observations. Ocean Model. 153, 101673.CrossRefGoogle Scholar
Larichev, V.D. & Reznik, G.M. 1976 Two-dimensional solitary Rossby waves. Dokl. USSR Acad. Sci. 231, 10771080.Google Scholar
LeSommer, J., Reznik, G.M. & Zeitlin, V. 2004 Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane. J. Fluid Mech. 515, 135170.Google Scholar
Lindzen, R.S. 1967 Planetary waves on beta-planes. Mon. Weath. Rev. 95, 441451.2.3.CO;2>CrossRefGoogle Scholar
Matsuno, T. 1966 Quasi-geostrophic motions in the equatorial area. J. Met. Soc. Japan 44, 2543.CrossRefGoogle Scholar
McCreary, J.P., Kundu, P.K. & Molinari, R.L. 1993 A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr. 31, 181244.CrossRefGoogle Scholar
O'Brien, J.J. & Reid, R.O. 1967 The nonlinear response of a two-layer, baroclinic ocean to a statinary axisymmetric hurricane. Part 1. Upwelling induced by momentum transport. J. Atmos. Sci. 24, 197207.2.0.CO;2>CrossRefGoogle Scholar
Reznik, G.M. & Grimshaw, R. 2001 Ageostrophic dynamics of an intense localized vortex on a beta-plane. J. Fluid Mech. 443, 351376.CrossRefGoogle Scholar
Rhines, P.B. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11, 401441.CrossRefGoogle Scholar
Ribstein, B., Gula, J. & Zeitlin, V. 2010 (A)geostrophic adjustment of dipolar perturbations, formation of coherent structures and their properties, as follows from high-resolution numerical simulations with rotating shallow water model. Phys. Fluids 22 (11), 116603.CrossRefGoogle Scholar
Ripa, P. 1993 Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70, 85111.CrossRefGoogle Scholar
Ripa, P. 1996 Low frequency approximation of a vertically averaged ocean model with thermodynamics. Rev. Mex. Fis. 42, 117135.Google Scholar
Rostami, M. & Zeitlin, V. 2019 a Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane. Phys. Fluids 31 (2), 021701.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2019 b Geostrophic adjustment on the equatorial beta-plane revisited. Phys. Fluids 31 (8), 081702.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2020 Can geostrophic adjustment of baroclinic disturbances in the tropical atmosphere explain MJO events? Q. J. R. Meteorol. Soc. 146 (733), 39984013.CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2021 Eastward-moving equatorial modons in moist-convective shallow-water models. Geophys. Astrophys. Fluid Dyn. 115, 345367.CrossRefGoogle Scholar
Rostami, M., Zhao, B. & Petri, S. 2022 On the genesis and dynamics of madden-julian oscillation-like structure formed by equatorial adjustment of localized heating. Q. J. R. Meteorol. Soc. 148, 37883813.CrossRefGoogle Scholar
Sobel, A.H., Nilsson, J. & Polvany, L.M. 2001 The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 36503665.2.0.CO;2>CrossRefGoogle Scholar
Tribbia, J.J. 1984 Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn. 30 (1-2), 131168.CrossRefGoogle Scholar
Verkley, W.T.M. 1984 The construction of barotropic modons on a sphere. J. Atmos. Sci. 41 (16), 24922504.2.0.CO;2>CrossRefGoogle Scholar
Warneford, E.S. & Dellar, P.J. 2013 The quasi-geostrophic theory of the thermal shallow water equations. J. Fluid Mech. 723, 374403.CrossRefGoogle Scholar
Warnerford, E.S. & Dellar, P.J. 2014 Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Phys. Fluids 26, 016603.CrossRefGoogle Scholar
Yano, J.-I. & Tribbia, J.J. 2017 Tropical atmospheric Madden–Julian oscillation: a strongly nonlinear free solitary Rossby wave? J. Atmos. Sci. 74 (10), 34733489.CrossRefGoogle Scholar
Young, W.R. 1994 The subinertial mixed layer approximation. J. Phys. Oceanogr. 24, 18121826.2.0.CO;2>CrossRefGoogle Scholar
Zeitlin, V. 2018 Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models. Oxford University Press.CrossRefGoogle Scholar
Zerroukat, M. & Allen, T. 2015 A moist Boussinesq shallow water equations set for testing atmospheric models. J. Comput. Phys. 290, 5572.CrossRefGoogle Scholar
Zhao, B., Zeitlin, V. & Fedorov, A. 2021 Equatorial modons in dry and moist-convective shallow-water systems on a rotating sphere. J. Fluid Mech. 916, A8.CrossRefGoogle Scholar