Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:48:19.831Z Has data issue: false hasContentIssue false

Effects of a nozzle on the propeller wake in an oblique flow using modal analysis

Published online by Cambridge University Press:  16 March 2023

Tianyuan Wang
Affiliation:
College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
Hongda Shi
Affiliation:
College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China Shandong Provincial Key Laboratory of Ocean Engineering, 238 Songling Road, Qingdao 266100, PR China Pilot National Laboratory for Marine Science and Technology (Qingdao), 1, Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, PR China Qingdao Municipal Key Laboratory of Ocean Renewable Energy, Ocean University of China, Qingdao 266100, PR China
Ming Zhao
Affiliation:
School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW 2751, Australia
Qin Zhang*
Affiliation:
College of Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China
*
 Email address for correspondence: zhangqin2000@ouc.edu.cn

Abstract

The effect of a nozzle on the wake dynamics of a four-bladed propeller operating in an oblique flow is investigated via modal decomposition and flow visualization of the results obtained from numerical simulations using delayed detached eddy simulations. The wake characteristics and destabilization mechanisms of a non-ducted propeller (NP) and ducted propeller (DP) in axisymmetric and oblique flow conditions are systematically analysed. The wake characteristics on the windward side are very different from those on the leeward side in an oblique flow, and the nozzle has a crucial role in mitigating the asymmetry and weakening the wake deflection. More destabilization mechanisms are present in an oblique flow than in an axisymmetric flow, including the asymmetric evolution and destabilization of the helixes on the windward and leeward sides of the NP wake, the interaction between the vortex shedding and the helixes in the DP leeward region, and the generation of a tube-shaped wake envelope around the nozzle and its rolling-up. Moreover, the effect of the nozzle on wake meandering is discussed based on modal analysis.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, T., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.Google Scholar
Ahmed, S., Croaker, P. & Doolan, C.J. 2020 On the instability mechanisms of ship propeller wakes. Ocean Engng 213, 107609.CrossRefGoogle Scholar
Allen, J.J. & Auvity, B. 2002 Interaction of a vortex ring with a piston vortex. J. Fluid Mech. 465, 353378.CrossRefGoogle Scholar
Ashton, R., Viola, F., Camarri, S., Gallaire, F. & Iungo, G.V. 2016 Hub vortex instability within wind turbine wakes: effects of wind turbulence, loading conditions, and blade aerodynamics. Phys. Rev. Fluids 1, 118.CrossRefGoogle Scholar
Bastankhah, M. & Porté-Agel, F. 2016 Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 806, 506541.Google Scholar
Bastankhah, M. & Porté-Agel, F. 2017 Wind tunnel study of the wind turbine interaction with a boundary-layer flow: upwind region, turbine performance, and wake region. Phys. Fluids 29, 065105.CrossRefGoogle Scholar
Borg, M.G., Xiao, Q., Allsop, S., Incecik, A. & Peyrard, C. 2020 A numerical performance analysis of a ducted, high-solidity tidal turbine in yawed flow conditions. Renew. Energy 193, 179194.CrossRefGoogle Scholar
Bossuyt, J., Scott, R., Ali, N. & Cal, R.B. 2021 Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines. J. Fluid Mech. 917, A3.CrossRefGoogle Scholar
Brunton, S.L., Budišić, M., Kaiser, E. & Kutz, J.N. 2022 Modern Koopman theory for dynamical systems. SIAM Rev. 64, 229340.CrossRefGoogle Scholar
Celik, I., Ghia, U., Roache, P.J., Freitas, C., Coloman, H. & Raad, P. 2008 Procedure of estimation and reporting of uncertainty due to discretization in CFD applications. Trans. ASME J. Fluids Engng 130, 078001.Google Scholar
Chen, K.K., Tu, J.H. & Rowley, C.W. 2012 Variants of dynamic mode decomposition: boundary condition, Koopman, and fourier analyses. J. Nonlinear Sci. 22, 887915.CrossRefGoogle Scholar
Cozijn, J. & Hallmann, R. 2012 The wake flow behind azimuthing thrusters: measurements in open water, under a plate and under a barge. In Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil. ASME.CrossRefGoogle Scholar
Cozijn, J.L., Hallmann, R. & Koop, A.H. 2010 Analysis of the velocities in the wake of an azimuthing thruster, using PIV measurements and CFD calculations. In Proceedings of Dynamic Positioning Conference, Houston, Texas, USA.Google Scholar
De Cillis, G., Cherubini, S., Semeraro, O., Leonardi, S. & De Palma, P. 2022 a The influence of incoming turbulence on the dynamic modes of an NREL-5MW wind turbine wake. Renew. Energy 183, 601616.CrossRefGoogle Scholar
De Cillis, G., Cherubini, S., Semeraro, O., Leonardi, S. & De Palma, P. 2022 b Stability and optimal forcing analysis of a wind turbine wake: comparison with POD. Renew. Energy 181, 765785.CrossRefGoogle Scholar
Debnath, M., Santoni, C., Leonardi, S. & Iungo, G.V. 2017 Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Phil. Trans. R. Soc. A 375, 20160108.CrossRefGoogle ScholarPubMed
Desoer, C. & Wang, Y.T. 1979 On the generalized nyquist stability criterion. In Proceedings of the 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, Fort Lauderdale, USA. IEEE.CrossRefGoogle Scholar
Di Felice, F., Di Florio, D., Felli, M. & Romano, G. 2004 Experimental Investigation of the propeller wake at different loading conditions by particle image velocimetry. J. Ship Res. 48, 168190.CrossRefGoogle Scholar
Di Mascio, A., Muscari, R. & Dubbioso, G. 2014 On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263307.CrossRefGoogle Scholar
Dubbioso, G., Muscari, R. & Di Mascio, A. 2013 Analysis of the performances of a marine propeller operating in oblique flow. Comput. Fluids 75, 86102.CrossRefGoogle Scholar
Dubbioso, G., Muscari, R. & Di Mascio, A. 2014 Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Comput. Fluids 92, 5681.CrossRefGoogle Scholar
Farrell, P.E. & Maddison, J.R. 2011 Conservative interpolation between volume meshes by local Galerkin projection. Comput. Meth. Appl. Mech. Engng 200, 89100.CrossRefGoogle Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.CrossRefGoogle Scholar
Felli, M. & Di Felice, F. 2005 Propeller wake analysis in nonuniform inflow by LDV phase sampling techniques. J. Mar. Sci. Technol. 10, 159172.CrossRefGoogle Scholar
Felli, M., Di Felice, F. & Guj, G. 2006 Analysis of the propeller wake evolution by pressure and velocity phase measurements. Exp. Fluids 41, 441451.Google Scholar
Felli, M. & Falchi, M. 2018 Propeller wake evolution mechanisms in oblique flow conditions. J. Fluid Mech. 845, 520559.CrossRefGoogle Scholar
Felli, M., Falchi, M. & Dubbioso, G. 2015 Hydrodynamic and Hydroacoustic analysis of a marine propeller wake by TOMO-PIV. In Proceedings of the Fourth International Symposium on Marine Propulsors (SMP'15), Austin, Texas, USA. SMP.Google Scholar
Foti, D., Yang, X.L., Campagnolo, F., Maniaci, D. & Sotiropoulos, F. 2018 a Wake meandering of a model wind turbine operating in two different regimes. Phys. Rev. Fluids 3, 054607.CrossRefGoogle Scholar
Foti, D., Yang, X.L., Guala, M. & Sotiropoulos, F. 2016 Wake meandering statistics of a model wind turbine: insights gained by large eddy simulations. Phys. Rev. Fluids 1, 044407.CrossRefGoogle Scholar
Foti, D., Yang, X.L., Shen, L. & Sotiropoulos, F. 2019 Effect of wind turbine nacelle on turbine wake dynamics in large wind farms. J. Fluid Mech. 869, 126.CrossRefGoogle Scholar
Foti, D., Yang, X.L. & Sotiropoulos, F. 2018 b Similarity of wake meandering for different wind turbine designs for different scales. J. Fluid Mech. 842, 525.Google Scholar
Gong, J., Ding, J.M. & Wang, L.Z. 2021 Propeller–duct interaction on the wake dynamics of a ducted propeller. Phys. Fluids 33, 074102.CrossRefGoogle Scholar
Gong, J., Guo, C.Y., Zhao, D.G., Wu, T.C. & Song, K.W. 2018 A comparative DES study of wake vortex evolution for ducted and non-ducted propellers. Ocean Engng 160, 7893.CrossRefGoogle Scholar
Gupta, V. & Wan, M.P. 2019 Low-order modelling of wake meandering behind turbines. J. Fluid Mech. 877, 534560.CrossRefGoogle Scholar
Hamilton, N., Tutkun, M. & Cal, R.B. 2015 Wind turbine boundary layer arrays for Cartesian and staggered configurations: part II, low-dimensional representations via the proper orthogonal decomposition. Wind Energy 18, 297315.CrossRefGoogle Scholar
Howard, K.B., Singh, A., Sotiropoulos, F. & Guala, M. 2015 On the statistics of wind turbine wake meandering: an experimental investigation. Phys. Fluids 27, 075103.CrossRefGoogle Scholar
Huang, Q.G., Qin, D.H. & Pan, G. 2022 Numerical simulation of the wake dynamics of the pumpjet propulsor in oblique inflow. Phys. Fluids 34, 065103.CrossRefGoogle Scholar
Iungo, G.V., Santoni-Ortiz, C., Abkar, M., Porté-Agel, F., Rotea, M.A. & Leonardi, S. 2015 Data-driven reduced order model for prediction of wind turbine wakes. J. Phys.: Conf. Ser. 625, 012009.Google Scholar
Iungo, G.V., Viola, F., Camarri, S., Porté-Agel, F. & Gallaire, F. 2013 Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech. 737, 499526.CrossRefGoogle Scholar
Joukowsky, N.E. 1912 Vortex theory of screw propeller. Tr. Otd. Fiz. Nauk O-va Lyubit. Estestvoznan 16, 131.Google Scholar
Jovanović, M.R., Schmid, P.J. & Nichols, J.W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 122.CrossRefGoogle Scholar
Kang, S., Yang, X.L. & Sotiropoulos, F. 2014 On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J. Fluid Mech. 744, 376403.CrossRefGoogle Scholar
Koop, A., Cozijn, H., Schrijvers, P. & Vaz, G. 2017 Determining thruster-hull interaction for a drill-ship using CFD. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway. ASME.CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2015 Analysis of marine propulsor in crashback using large eddy simulation. In Proceedings of the Fourth International Symposium on Marine Propulsors (SMP'15). Austin, Texas, USA. SMP.Google Scholar
Kumar, P. & Mahesh, K. 2017 Large eddy simulation of propeller wake instabilities. J. Fluid Mech. 814, 361396.CrossRefGoogle Scholar
Le, T.B., Borazjani, I., Kang, S. & Sotiropoulos, F. 2011 On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686, 451483.CrossRefGoogle Scholar
Li, H., Huang, Q.G., Pan, G., Dong, X.G. & Li, F.Z. 2022 An investigation on the flow and vortical structure of a pre-swirl stator pump-jet propulsor in drift. Ocean Engng 250, 111061.CrossRefGoogle Scholar
Li, Z.B. & Yang, X.L. 2021 Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles. J. Fluid Mech. 921, A11.CrossRefGoogle Scholar
Lumley, J.L. 1970 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Maciel, P., Koop, A. & Vaz, G. 2013 Modelling thruster-hull interaction with CFD. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France. ASME.CrossRefGoogle Scholar
Magionesi, F., Dubbioso, G., Muscari, R. & Di Mascio, A. 2018 Modal analysis of the wake past a marine propeller. J. Fluid Mech. 855, 469502.CrossRefGoogle Scholar
Mao, X. & Sørensen, J.N. 2018 Far-wake meandering induced by atmospheric eddies in flow past a wind turbine. J. Fluid Mech. 846, 190209.CrossRefGoogle Scholar
Micallef, D. & Sant, T. 2016 A Review of Wind Turbine Yaw Aerodynamics. IntechOpen.CrossRefGoogle Scholar
Muscari, R., Di Mascio, A. & Verzicco, R. 2013 Modeling of vortex dynamics in the wake of a marine propeller. Comput. Fluids 73, 6579.CrossRefGoogle Scholar
Muscari, R., Dubbioso, G. & Di Mascio, A. 2017 Analysis of the flow field around a rudder in the wake of a simplified marine propeller. J. Fluid Mech. 814, 547569.CrossRefGoogle Scholar
Nemes, A., Sherry, M., Jacono, D.L., Blackburn, H.M. & Sheridan, J. 2014 Evolution and breakdown of helical vortex wakes behind a wind turbine. J. Phys.: Conf. Ser. 555, 012077.Google Scholar
Noack, B.R., Stankiewicz, W., Morzyński, M. & Schmid, P.J. 2016 Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872.CrossRefGoogle Scholar
Okulov, V. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.Google Scholar
Okulov, V. & Sørensen, J. 2007 Stability of helical tip vortices in rotor far wake. J. Fluid Mech. 576, 125.CrossRefGoogle Scholar
Paik, B.G., Kyung, Y.K., Jung, Y.L. & Sang, J.L. 2010 Analysis of unstable vortical structure in a propeller wake affected by a simulated hull wake. Exp. Fluids 48, 11211133.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2021 Flow over a hydrofoil at incidence immersed within the wake of a propeller. Phys. Fluids 33, 125108.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2020 The wake structure of a propeller operating upstream of a hydrofoil. J. Fluid Mech. 904, A12.Google Scholar
Posa, A., Broglia, R. & Balaras, E. 2022 Recovery in the wake of in-line axial-flow rotors. Phys. Fluids 34, 045104.CrossRefGoogle Scholar
Posa, A., Broglia, R., Felli, M., Falchi, M. & Balaras, E. 2019 Characterization of the wake of a submarine propeller via large-Eddy simulation. Comput. Fluids 184, 138152.CrossRefGoogle Scholar
Qatramez, A.E. & Foti, D. 2021 Reduced-order model predictions of wind turbines via mode decomposition and sparse sampling. In AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Qin, D.H., Huang, Q.G., Pan, G., Han, P., Luo, Y. & Dong, X.G. 2021 Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor. Phys. Fluids 33, 055119.CrossRefGoogle Scholar
Qiu, C.C., Pan, G., Huang, Q.G. & Shi, Y. 2020 Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow. Int. J. Nav. Arch. Ocean Engng 12, 102115.Google Scholar
Ricca, R. 1994 Effect of torsion on the motion of a helical vortex filament. J. Fluid Mech. 273, 241259.CrossRefGoogle Scholar
Rowley, C.W. & Dawson, S. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.CrossRefGoogle Scholar
Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D.S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.CrossRefGoogle Scholar
Rumsey, C.L. 2007 Apparent transition behavior of widely-used turbulence models. Intl J. Heat Fluid Flow 28, 14601471.CrossRefGoogle Scholar
Sarmast, S., Dadfar, R., Mikkelsen, R.F., Schlatter, P., Ivanell, S., Sørensen, J.N. & Henningson, D.S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.Google Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmid, P.J., Violato, D. & Scarano, F. 2012 Decomposition of time-resolved tomographic PIV. Exp. Fluids. 52, 15671579.Google Scholar
Shi, H.D., Wang, T.Y., Zhao, M. & Zhang, Q. 2022 Modal analysis of non-ducted and ducted propeller wake under axis flow. Phys. Fluids 34, 055128.CrossRefGoogle Scholar
Shur, M.L., Spalart, P.R., Strelets, M.K. & Travin, A.K. 1999 Detached-eddy simulation of an airfoil at high angle of attack. In 4th International Symposium on Engineering Turbulence Modelling and Measurements (ed. W. Rodi & D. Laurence), pp. 669–678. Elsevier Science Ltd.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I-coherent structures. II-symmetries and transformations. III-dynamics and scaling. Q. Appl. Maths 45, 561571.CrossRefGoogle Scholar
Spalart, P.R. & Allmaras, S.R. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K. & Travin, A.K. 2006 A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181195.CrossRefGoogle Scholar
Spalart, P.R., Shur, M.L., Strelets, M.K. & Travin, A.K. 2012 Sensitivity of landing-gear noise predictions by large-eddy simulation to numerics and resolution. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.Google Scholar
Statnikov, V., Meinke, M. & Schröder, W. 2017 Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech. 815, 125.CrossRefGoogle Scholar
Steinfurth, B. & Weiss, J. 2020 Vortex rings produced by non-parallel planar starting jets. J. Fluid Mech. 903, A16.CrossRefGoogle Scholar
Sun, C., Tian, T., Zhu, X.C., Hua, O.Y. & Du, Z.H. 2021 Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition. Energy 227, 120418.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55, 129.CrossRefGoogle Scholar
Travin, A., Shur, M., Strelets, M. & Spalart, P.R. 2002 Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In Advances in LES of Complex Flows (ed. R. Friedrich & W. Rodi), pp. 239–254. Springer.CrossRefGoogle Scholar
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L. & Kutz, J.N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1, 391421.CrossRefGoogle Scholar
Verma, A., Jang, H. & Mahesh, K. 2012 The effect of an upstream hull on a propeller in reverse rotation. J. Fluid Mech. 704, 6188.CrossRefGoogle Scholar
Viola, F., Iungo, G.V., Camarri, S., Porté-Agel, F. & Gallaire, F. 2014 Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data. J. Fluid Mech. 750, R1.CrossRefGoogle Scholar
Viola, F., Iungo, G.V., Camarri, S., Porté-Agel, F. & Gallaire, F. 2015 Instability of wind turbine wakes immersed in the atmospheric boundary layer. J. Phys.: Conf. Ser. 625, 012034.Google Scholar
Viviani, M., Bonvino, C., Mauro, S., Cerruti, M., Guadalupi, D. & Menna, A. 2007 Analysis of asymmetrical shaft power increase during tight maneuvers. In 9th International Conference on Fast Sea Transportation (FAST 2007), Shanghai, China. GICAN.Google Scholar
Wang, L.Z., Guo, C.Y., Xu, P. & Su, Y.M. 2019 Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engng 188, 106250.CrossRefGoogle Scholar
Wang, L.Z., Liu, X.Y. & Wu, T.C. 2022 Modal analysis of the propeller wake under the heavy loading condition. Phys. Fluids 34, 055107.CrossRefGoogle Scholar
Wang, L.Z., Wu, T.C., Gong, J. & Yang, Y.R. 2021 a Numerical analysis of the wake dynamics of a propeller. Phys. Fluids 33, 095120.CrossRefGoogle Scholar
Wang, L.Z., Wu, T.C., Gong, J. & Yang, Y.R. 2021 b Numerical simulation of the wake instabilities of a propeller. Phys. Fluids 33, 125125.CrossRefGoogle Scholar
Widnall, S.E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54, 641663.CrossRefGoogle Scholar
Wu, J.Z., Ma, H.Y. & Zhou, M.D. 2006 Vorticity and Vortex Dynamics. Springer.CrossRefGoogle Scholar
Yang, X.L. & Sotiropoulos, F. 2019 A review on the meandering of wind turbine wakes. Energies 12, 120.CrossRefGoogle Scholar
Zhang, Q. & Jaiman, R.K. 2019 Numerical analysis on the wake dynamics of a ducted propeller. Ocean Engng 171, 202224.CrossRefGoogle Scholar
Zhang, Q., Ma, P.F. & Liu, J. 2018 Investigation on the performance of a ducted propeller in oblique flow. Trans. ASME J. Offshore Mech. Arctic Engng 142, 011801.CrossRefGoogle Scholar
Zhang, W.P., Markfort, C.D. & Porté-Agel, F. 2012 Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Exp. Fluids 52, 12191235.CrossRefGoogle Scholar
Zhang, W.P., Ning, X.S., Li, F.G., Guo, H. & Sun, S.L. 2021 Vibrations of simplified rudder induced by propeller wake. Phys. Fluids 33, 083618.CrossRefGoogle Scholar
Zong, H. & Porté-Agel, F. 2020 A point vortex transportation model for yawed wind turbine wakes. J. Fluid Mech. 890, A8.Google Scholar