Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T08:17:02.472Z Has data issue: false hasContentIssue false

The dynamics of the tip vortices shed by a tip-loaded propeller with winglets

Published online by Cambridge University Press:  04 November 2022

Antonio Posa*
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, Roma 00128, Italy
*
Email address for correspondence: antonio.posa@inm.cnr.it

Abstract

The tip vortices shed by two marine propellers are studied, relying on large-eddy simulation, using a cylindrical grid consisting of 5 billion points. A tip-loaded design, featuring winglets at the tips of its blades, is compared against a conventional one at the design advance coefficient and a model-scale Reynolds number equal to 432 000. The tip-loaded propeller achieves improved performance, but produces also more intense tip vortices. The propeller with winglets actually generates two vortices from the tip of each blade, originating at the edge of each winglet and at the junction between the winglets and the blades. They merge at a short distance downstream, within a diameter from the propeller plane. The helical vortices originating from this merging process experience a slower instability, in comparison with the tip vortices in the wake of the conventional propeller, persisting further downstream, due to the weaker shear with the wakes shed by the following blades. The results of the simulations highlight that splitting the single tip vortex of a conventional propeller into two smaller vortices by means of winglets does not imply necessarily the generation of weaker vortices and lower negative peaks of pressure at their core: the geometry of the winglets needs to be carefully optimized to achieve this target.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, A., Reclari, M., Sano, T., Iino, M. & Farhat, M. 2019 Suppressing tip vortex cavitation by winglets. Exp. Fluids 60 (11), 159.CrossRefGoogle Scholar
Asnaghi, A., Svennberg, U. & Bensow, R.E. 2020 Large eddy simulations of cavitating tip vortex flows. Ocean Engng 195, 106703.CrossRefGoogle Scholar
Balaras, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33 (3), 375404.CrossRefGoogle Scholar
Balaras, E., Schroeder, S. & Posa, A. 2015 Large-eddy simulations of submarine propellers. J. Ship Res. 59 (4), 227237.CrossRefGoogle Scholar
Bertetta, D., Brizzolara, S., Canepa, E., Gaggero, S. & Viviani, M. 2012 EFD and CFD characterization of a CLT propeller. Intl J. Rotating Mach. 2012, 348939.CrossRefGoogle Scholar
Brown, M., Sánchez-Caja, A., Adalid, J., Black, S., Pérez-Sobrino, M., Duerr, P., Schroeder, S. & Saisto, I. 2014 Improving propeller efficiency through tip loading. In Proceedings of the 30th Symposium on Naval Hydrodynamics (ed. P.A. Brandner, B.W. Pearce & K.-H. Kim), 2–7 November 2014, Hobart, Tasmania, Australia. University of Tasmania and US Office of Naval Research.Google Scholar
Brown, M., Schroeder, S. & Balaras, E. 2015 Vortex structure characterization of tip-loaded propellers. In Fourth International Symposium on Marine Propulsors (ed. S.A. Kinnas), Austin, Texas, USA, May 2015. The University of Texas at Austin.Google Scholar
Farcas, A., Thompson, P.M. & Merchant, N.D. 2016 Underwater noise modelling for environmental impact assessment. Environ. Impact. Assess. 57, 114122.CrossRefGoogle Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.CrossRefGoogle Scholar
Felli, M. & Falchi, M. 2018 A parametric survey of propeller wake instability mechanisms by detailed flow measurement and time resolved visualizations. In 32nd Symposium on Naval Hydrodynamics (ed. K.-H. Kim & M. Abdel-Maksoud), 5–10 August 2018, Hamburg, Germany. Hamburg University of Technology (TUHH) and U.S. Office of Naval Research.Google Scholar
Fukagata, K. & Kasagi, N. 2002 Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181 (2), 478498.CrossRefGoogle Scholar
Gaggero, S., González-Adalid, J. & Pérez-Sobrino, M. 2016 a Design and analysis of a new generation of CLT propellers. Appl. Ocean Res. 59, 424450.CrossRefGoogle Scholar
Gaggero, S., González-Adalid, J. & Pérez-Sobrino, M. 2016 b Design of contracted and tip loaded propellers by using boundary element methods and optimization algorithms. Appl. Ocean Res. 55, 102129.CrossRefGoogle Scholar
Gao, H., Zhu, W., Liu, Y. & Yan, Y. 2019 Effect of various winglets on the performance of marine propeller. Appl. Ocean Res. 86, 246256.CrossRefGoogle Scholar
Gong, J., Guo, C.-Y., Zhao, D.-G., Wu, T.-C. & Song, K.-W. 2018 A comparative DES study of wake vortex evolution for ducted and non-ducted propellers. Ocean Engng 160, 7893.CrossRefGoogle Scholar
Guilmineau, E., Deng, G., Leroyer, A., Queutey, P., Visonneau, M. & Wackers, J. 2015 Influence of the turbulence closures for the wake prediction of a marine propeller. In Fourth International Symposium on Marine Propulsors (ed. S.A. Kinnas), Austin, Texas, USA, May 2015. The University of Texas at Austin.Google Scholar
Haimov, H., Vicario, J. & Del Corral, J. 2011 RANSE code application for ducted and endplate propellers in open water. In Second International Symposium on Marine Propulsors (ed. M. Abdel-Maksoud), Hamburg, Germany, June 2011. Hamburg University of Technology (TUHH) and German Society for Maritime Technology (STG).Google Scholar
Hunt, J.C., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research, Proceedings of the Summer Program 1988 (ed. P. Moin, W.C. Reynolds & J. Kim), pp. 193–208. Center for Turbulence Research, Stanford University.Google Scholar
Kim, S. & Kinnas, S.A. 2021 Prediction of cavitating performance of a tip loaded propeller and its induced hull pressures. Ocean Engng 229, 108961.CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2017 Large eddy simulation of propeller wake instabilities. J. Fluid Mech. 814, 361396.CrossRefGoogle Scholar
Liao, F., Wang, S., Yang, X. & He, G. 2020 A simulation-based actuator surface parameterization for large-eddy simulation of propeller wakes. Ocean Engng 199, 107023.CrossRefGoogle Scholar
Maeda, S., Sano, T., Iino, M., Farhat, M. & Amini, A. 2021 Effect of the winglet on reduction of blade tip vortex from elliptical hydrofoil. IOP Conf. Ser.: Earth Environ. Sci. 774 (1), 012054.CrossRefGoogle Scholar
Muscari, R. & Di Mascio, A. 2013 Detached eddy simulation of the flow behind an isolated propeller. In Third International Symposium on Marine Propulsors, Launceston (ed. J. Binns, R. Brown & N. Bose), Tasmania, Australia, May 2013. Australian Maritime College, University of Tasmania.Google Scholar
Muscari, R., Di Mascio, A. & Verzicco, R. 2013 Modeling of vortex dynamics in the wake of a marine propeller. Comput. Fluids 73, 6579.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Park, J. & Seong, W. 2017 Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment. J. Hydrodyn. 29 (6), 962971.CrossRefGoogle Scholar
Peng, X.-X., Zhang, L.-X., Wang, B.-L., Xu, L.-H., Song, M.-T., Cao, Y.-T., Liu, Y.-W., Hong, F.-W. & Yan, K. 2019 Study of tip vortex cavitation inception and vortex singing. J. Hydrodyn. 31 (6), 11701177.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2021 a Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation. Comput. Fluids 216, 104815.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2021 b Flow over a hydrofoil at incidence immersed within the wake of a propeller. Phys. Fluids 33 (12), 125108.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2022 a Development of the wake shed by a system composed of a propeller and a rudder at incidence. Intl J. Heat Fluid Flow 94, 108919.CrossRefGoogle Scholar
Posa, A. & Broglia, R. 2022 b Near wake of a propeller across a hydrofoil at incidence. Phys. Fluids 34 (6), 065141.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2021 Instability of the tip vortices shed by an axial-flow turbine in uniform flow. J. Fluid Mech. 920, A19.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2022 a Recovery in the wake of in-line axial-flow rotors. Phys. Fluids 34 (4), 045104.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2022 b The dynamics of the tip and hub vortices shed by a propeller: Eulerian and Lagrangian approaches. Comput. Fluids 236, 105313.CrossRefGoogle Scholar
Posa, A., Broglia, R., Felli, M., Falchi, M. & Balaras, E. 2019 Characterization of the wake of a submarine propeller via large-eddy simulation. Comput. Fluids 184, 138152.CrossRefGoogle Scholar
Posa, A., Vanella, M. & Balaras, E. 2017 An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods. J. Comput. Phys. 351, 422436.CrossRefGoogle Scholar
Rossi, T. & Toivanen, J. 1999 A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (5), 17781793.CrossRefGoogle Scholar
Sánchez-Caja, A., González-Adalid, J., Pérez-Sobrino, M. & Saisto, I. 2012 Study of end-plate shape variations for tip loaded propellers using a RANSE solver. In Proceedings of the 29th Symposium on Naval Hydrodynamics, 26–31 August 2012, Gothenburg, Sweden. U.S. Office of Naval Research, Chalmers University of Technology and SSPA Sweden AB.Google Scholar
Sánchez-Caja, A., González-Adalid, J., Pérez-Sobrino, M. & Saisto, I. 2014 a Evaluation of endplate impact on tip loaded propeller performance using a RANSE solver. Intl Shipbuilding Prog. 61 (1–2), 103128.Google Scholar
Sánchez-Caja, A., González-Adalid, J., Pérez-Sobrino, M. & Sipilä, T. 2014 b Scale effects on tip loaded propeller performance using a RANSE solver. Ocean Engng 88, 607617.CrossRefGoogle Scholar
Sánchez-Caja, A., Sipilä, T. & Pylkkänen, J. 2006 Simulation of the incompressible viscous flow around an endplate propeller using a RANSE solver. In Proceedings of the 26th Symposium on Naval Hydrodynamics, 17–22 September 2006, Rome, Italy. U.S. Office of Naval Research and CNR-INSEAN, Marine Technology Research Institute.Google Scholar
Segalini, A. & Inghels, P. 2014 Confinement effects in wind-turbine and propeller measurements. J. Fluid Mech. 756, 110129.CrossRefGoogle Scholar
Shin, K.W. & Andersen, P. 2017 CFD analysis of scale effects on conventional and tip-modified propellers. In Fifth International Symposium on Marine Propulsors (ed. A. Sánchez-Caja), Espoo, Finland, June 2017. VTT Technical Research Center of Finland Ltd.Google Scholar
Sun, S., Wang, C., Guo, C., Zhang, Y., Sun, C. & Liu, P. 2020 Numerical study of scale effect on the wake dynamics of a propeller. Ocean Engng 196, 106810.CrossRefGoogle Scholar
Vakili, S., Ölçer, A.I. & Ballini, F. 2021 The development of a transdisciplinary policy framework for shipping companies to mitigate underwater noise pollution from commercial vessels. Mar. Pollut. Bull. 171, 112687.CrossRefGoogle ScholarPubMed
Vakili, S.V., Ölçer, A.I. & Ballini, F. 2020 The development of a policy framework to mitigate underwater noise pollution from commercial vessels: the role of ports. Mar. Policy 120, 104132.CrossRefGoogle Scholar
Van Kan, J. 1986 A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (3), 870891.CrossRefGoogle Scholar
Vanella, M., Posa, A. & Balaras, E. 2014 Adaptive mesh refinement for immersed boundary methods. Trans. ASME J. Fluids Engng 136 (4), 040909.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.CrossRefGoogle Scholar
Viitanen, V.M., Hynninen, A., Sipilä, T. & Siikonen, T. 2018 DDES of wetted and cavitating marine propeller for CHA underwater noise assessment. J. Mar. Sci. Engng 6 (2), 56.CrossRefGoogle Scholar
Wang, L., Wu, T., Gong, J. & Yang, Y. 2021 Numerical simulation of the wake instabilities of a propeller. Phys. Fluids 33 (12), 125125.CrossRefGoogle Scholar
Widnall, S.E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (4), 641663.CrossRefGoogle Scholar
Yang, J. & Balaras, E. 2006 An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215 (1), 1240.CrossRefGoogle Scholar
Yang, J., Preidikman, S. & Balaras, E. 2008 A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J. Fluids Struct. 24 (2), 167182.CrossRefGoogle Scholar
Zhang, B., Ding, C. & Liang, C. 2021 High-order implicit large-eddy simulation of flow over a marine propeller. Comput. Fluids 224, 104967.CrossRefGoogle Scholar
Zhang, L.-X., Zhang, N., Peng, X.-X., Wang, B.-L. & Shao, X.-M. 2015 A review of studies of mechanism and prediction of tip vortex cavitation inception. J. Hydrodyn. 27 (4), 488495.CrossRefGoogle Scholar
Zhu, W. & Gao, H. 2019 A numerical investigation of a winglet-propeller using an LES model. J. Mar. Sci. Engng 7 (10), 333.CrossRefGoogle Scholar