Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T20:15:15.778Z Has data issue: false hasContentIssue false

Direct numerical simulations of microlayer formation during heterogeneous bubble nucleation

Published online by Cambridge University Press:  12 April 2024

M. Saini*
Affiliation:
Sorbonne Université and CNRS, Institut Jean le Rond d'Alembert UMR 7190, F75005 Paris, France
X. Chen
Affiliation:
Sorbonne Université and CNRS, Institut Jean le Rond d'Alembert UMR 7190, F75005 Paris, France
S. Zaleski*
Affiliation:
Sorbonne Université and CNRS, Institut Jean le Rond d'Alembert UMR 7190, F75005 Paris, France Institut universitaire de France, UMR 7190, Institut Jean le Rond d'Alembert, F75005 Paris, France
D. Fuster*
Affiliation:
Sorbonne Université and CNRS, Institut Jean le Rond d'Alembert UMR 7190, F75005 Paris, France

Abstract

In this article, we present direct numerical simulation results for the expansion of spherical cap bubbles attached to a rigid wall due to a sudden drop in the ambient pressure. The critical pressure drop beyond which the bubble growth becomes unstable is found to match well with the predictions from classical theory of heterogeneous nucleation imposing a quasi-static bubble evolution. When the pressure drop is significantly higher than the critical value, a liquid microlayer appears between the bubble and the wall. In this regime, the interface outside the microlayer grows at an asymptotic velocity that can be predicted from the Rayleigh–Plesset equation, while the contact line evolves with another asymptotic velocity that scales with a visco-capillary velocity that obeys the Cox–Voinov law. In general, three distinctive regions can be distinguished: the region very close to the contact line where dynamics is governed by visco-capillary effects, an intermediate region controlled by inertio-viscous effects away from the contact line yet inside the viscous boundary layer, and the region outside the boundary layer dominated by inertial effects. The microlayer forms in a regime where the capillary effects are confined in a region much smaller than the viscous boundary layer thickness. In this regime, the global capillary number takes values much larger then the critical capillary number for bubble nucleation, and the microlayer height is controlled by viscous effects and not surface tension.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Buongiorno, J., Guion, A., Popinet, S., Saade, Y., Scardovelli, R. & Zaleski, S. 2018 Transition in a numerical model of contact line dynamics and forced dewetting. J. Comput. Phys. 374, 10611093.CrossRefGoogle Scholar
Afkhami, S. & Bussmann, M. 2008 Height functions for applying contact angles to 2D VOF simulations. Intl J. Numer. Meth. Fluids 57 (4), 453472.CrossRefGoogle Scholar
Apfel, R.E. 1970 The role of impurities in cavitation-threshold determination. J. Acoust. Soc. Am. 48 (5B), 11791186.CrossRefGoogle Scholar
Arrufat, T., Crialesi, M., Fuster, D., Ling, Y., Malan, L., Pal, S., Scardovelli, R., Tryggvason, G. & Zaleski, S. 2021 A mass-momentum consistent, volume-of-fluid method for incompressible flow on staggered grids. Comput. Fluids 215, 104785.CrossRefGoogle Scholar
Atchley, A.A. & Prosperetti, A. 1989 The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86 (3), 10651084.CrossRefGoogle Scholar
Aussillous, P. & Quéré, D. 2000 Quick deposition of a fluid on the wall of a tube. Phys. Fluids 12 (10), 23672371.CrossRefGoogle Scholar
Bergamasco, L. & Fuster, D. 2017 Oscillation regimes of gas/vapor bubbles. Intl J. Heat Mass Transfer 112, 7280.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739.CrossRefGoogle Scholar
Borkent, B.M., Gekle, S., Prosperetti, A. & Lohse, D. 2009 Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21 (10), 102003.CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Bremond, N., Arora, M., Dammer, S.M. & Lohse, D. 2006 Interaction of cavitation bubbles on a wall. Phys. Fluids 18 (12), 121505.CrossRefGoogle Scholar
Bretherton, F.P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166188.CrossRefGoogle Scholar
Bureš, L. & Sato, Y. 2022 Comprehensive simulations of boiling with a resolved microlayer: validation and sensitivity study. J. Fluid Mech. 933, A54.CrossRefGoogle Scholar
Cocchi, J.P., Saurel, R. & Loraud, J.C. 1996 Treatment of interface problems with Godunov-type schemes. Shock Waves 5 (6), 347357.CrossRefGoogle Scholar
Cooper, M.G. & Lloyd, A.J.P. 1969 The microlayer in nucleate pool boiling. Intl J. Heat Mass Transfer 12 (8), 895913.CrossRefGoogle Scholar
Cox, R.G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Crum, L.A. 1979 Tensile strength of water. Nature 278 (5700), 148149.CrossRefGoogle Scholar
Derjaguin, B.V. 1993 On the thickness of a layer of liquid remaining on the walls of vessels after their emptying, and the theory of the application of photoemulsion after coating on the cine film (presented by academician AN Frumkin on July 28, 1942). Prog. Surf. Sci. 43 (1-4), 129133.CrossRefGoogle Scholar
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93 (9), 094502.CrossRefGoogle ScholarPubMed
Fan, Y., Li, H. & Fuster, D. 2020 Optimal subharmonic emission of stable bubble oscillations in a tube. Phys. Rev. E 102 (1), 013105.CrossRefGoogle ScholarPubMed
Fuster, D., Pham, K. & Zaleski, S. 2014 Stability of bubbly liquids and its connection to the process of cavitation inception. Phys. Fluids 26 (4), 042002.CrossRefGoogle Scholar
Fuster, D. & Popinet, S. 2018 An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752768.CrossRefGoogle Scholar
Galloway, W.J. 1954 An experimental study of acoustically induced cavitation in liquids. J. Acoust. Soc. Am. 26 (5), 849857.CrossRefGoogle Scholar
Gennes, P.G., Brochard, F., Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.CrossRefGoogle Scholar
Greenspan, M. & Tschiegg, C.E. 1967 Radiation-induced acoustic cavitation; apparatus and some results. J. Res. Natl Bur. Stand. C 71, 299.Google Scholar
Guion, A., Afkhami, S., Zaleski, S. & Buongiorno, J. 2018 Simulations of microlayer formation in nucleate boiling. Intl J. Heat Mass Transfer 127, 12711284.CrossRefGoogle Scholar
Guion, A.N. 2017 Modeling and simulation of liquid microlayer formation and evaporation in nucleate boiling using computational fluid dynamics. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Harvey, N.E. 1945 Decompression sickness and bubble formation in blood and tissues. Bull. N. Y. Acad. Med. 21 (10), 505.Google ScholarPubMed
Harvey, N.E. 1946 Decompression sickness and bubble formation in blood and tissue, bull. Anesthesiology 7 (4), 457457.CrossRefGoogle Scholar
Huber, G., Tanguy, S., Sagan, M. & Colin, C. 2017 Direct numerical simulation of nucleate pool boiling at large microscopic contact angle and moderate Jakob number. Intl J. Heat Mass Transfer 113, 662682.CrossRefGoogle Scholar
Hupfeld, T., Laurens, G., Merabia, S., Barcikowski, S., Gökce, B. & Amans, D. 2020 Dynamics of laser-induced cavitation bubbles at a solid–liquid interface in high viscosity and high capillary number regimes. J. Appl. Phys. 127 (4), 044306.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2006 Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219 (2), 715732.CrossRefGoogle Scholar
Judd, R.L. & Hwang, K.S. 1976 A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. J. Heat Transfer 98 (4), 623–629.Google Scholar
Jung, S. & Kim, H. 2018 Hydrodynamic formation of a microlayer underneath a boiling bubble. Intl J. Heat Mass Transfer 120, 12291240.CrossRefGoogle Scholar
Kamal, C., Sprittles, J.E., Snoeijer, J.H. & Eggers, J. 2019 Dynamic drying transition via free-surface cusps. J. Fluid Mech. 858, 760786.CrossRefGoogle Scholar
Kwatra, N., Su, J., Grétarsson, J.T. & Fedkiw, R. 2009 A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228 (11), 41464161.CrossRefGoogle Scholar
Landau, L. & Levich, B. 1988 Dragging of a liquid by a moving plate. In Dynamics of Curved Fronts, pp. 141–153. Elsevier.CrossRefGoogle Scholar
Lien, Y.C. 1969 Bubble growth rates at reduced pressure. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Mikic, B.B., Rohsenow, W.M. & Griffith, P. 1970 On bubble growth rates. Intl J. Heat Mass Transfer 13 (4), 657666.CrossRefGoogle Scholar
Ming, H., Qin, J. & Gao, P. 2023 Early stage of bubble spreading in a viscous ambient liquid. J. Fluid Mech. 964, A41.CrossRefGoogle Scholar
Pandey, V., Biswas, G., Dalal, A. & Welch, S.W.J. 2018 Bubble lifecycle during heterogeneous nucleate boiling. J. Heat Transfer 140 (12), 121503.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 4975.CrossRefGoogle Scholar
Saade, Y., Lohse, D. & Fuster, D. 2023 A multigrid solver for the coupled pressure-temperature equations in an all-Mach solver with VOF. J. Comput. Phys. 476, 111865.CrossRefGoogle Scholar
Saini, M. 2022 Direct numerical simulations of nucleation and collapse of bubbles attached to walls. PhD thesis, Sorbonne Université.Google Scholar
Saini, M., Saade, Y., Fuster, D. & Lohse, D. 2024 Finite speed of sound effects on asymmetry in multibubble cavitation. Phys. Rev. Fluids 9 (4), 043602.CrossRefGoogle Scholar
Saini, M., Tanne, E., Arrigoni, M., Zaleski, S. & Fuster, D. 2022 On the dynamics of a collapsing bubble in contact with a rigid wall. J. Fluid Mech. 948, A45.CrossRefGoogle Scholar
Saini, M., Zaleski, S. & Fuster, D. 2021 Direct numerical simulation of heterogeneous bubble nucleation. In 11th International Cavitation Symposium (CAV2021), 2021.Google Scholar
Sinha, G.K., Narayan, S. & Srivastava, A. 2022 Microlayer dynamics during the growth process of a single vapour bubble under subcooled flow boiling conditions. J. Fluid Mech. 931, A23.CrossRefGoogle Scholar
Strasberg, M. 1959 Onset of ultrasonic cavitation in tap water. J. Acoust. Soc. Am. 31 (2), 163176.CrossRefGoogle Scholar
Sullivan, P., Dockar, D., Borg, M.K., Enright, R. & Pillai, R. 2022 Inertio-thermal vapour bubble growth. J. Fluid Mech. 948, A55.CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Urbano, A., Bibal, M. & Tanguy, S. 2022 A semi implicit compressible solver for two-phase flows of real fluids. J. Comput. Phys. 456, 111034.CrossRefGoogle Scholar
Urbano, A., Tanguy, S., Huber, G. & Colin, C. 2018 Direct numerical simulation of nucleate boiling in micro-layer regime. Intl J. Heat Mass Transfer 123, 11281137.CrossRefGoogle Scholar
Voinov, O.V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.CrossRefGoogle Scholar
Wilson, S. 1982 The drag-out problem in film coating theory. J. Engng Maths 16 (3), 209221.CrossRefGoogle Scholar
Zhang, X. & Nikolayev, V.S. 2023 Time-averaged approach to the dewetting problem at evaporation. Europhys. Lett. 142 (3), 33002.CrossRefGoogle Scholar
Zou, A., Gupta, M. & Maroo, S.C. 2018 Origin, evolution, and movement of microlayer in pool boiling. J. Phys. Chem. Lett. 9 (14), 38633869.CrossRefGoogle ScholarPubMed
Supplementary material: File

Saini et al. supplementary movie 1

Contact line capillary number Ca(uCL) is plotted against capillary number Ca for different times where the numerical results are shown with the points while the solid lines are fitting from equation 4.1 for a contact angle of 90, 105 and 120 degrees.
Download Saini et al. supplementary movie 1(File)
File 235.3 KB
Supplementary material: File

Saini et al. supplementary movie 2

Contact line capillary number Ca(uCL) is plotted against capillary number Ca for different times where the numerical results are shown with the points while the solid lines are fitting from equation 4.1 for a contact angle of 45, 60 and 75 degrees.
Download Saini et al. supplementary movie 2(File)
File 241.1 KB
Supplementary material: File

Saini et al. supplementary material 3

Saini et al. supplementary material
Download Saini et al. supplementary material 3(File)
File 185.7 KB