Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T14:14:01.572Z Has data issue: false hasContentIssue false

A data-driven quasi-linear approximation for turbulent channel flow

Published online by Cambridge University Press:  31 January 2024

Jacob J. Holford*
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
Myoungkyu Lee
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
Yongyun Hwang
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
*
Email address for correspondence: jh5315@ic.ac.uk

Abstract

A data-driven implementation of a quasi-linear approximation is presented, extending a minimal quasi-linear approximation (MQLA) (Hwang & Ekchardt, J. Fluid Mech., vol. 894, 2020, p. A23) to incorporate non-zero streamwise Fourier modes. A data-based approach is proposed, matching the two-dimensional wavenumber spectra for a fixed spanwise wavenumber between a direct numerical simulation (DNS) (Lee & Moser, J. Fluid Mech., vol. 774, 2015, pp. 395–415) and that generated by the eddy viscosity enhanced linearised Navier–Stokes equations at $Re_\tau \approx 5200$, where $Re_\tau$ is the friction Reynolds number. Leveraging the self-similar nature of the energy-containing part in the DNS velocity spectra, a universal self-similar streamwise wavenumber weight is determined for the linearised fluctuation equations at $Re_\tau \simeq ~5200$. The data-driven quasi-linear approximation (DQLA) provides noteworthy enhancements in the wall-normal and spanwise turbulence intensity profiles. It exhibits a qualitatively similar structure in the spanwise wavenumber velocity spectra compared with the MQLA. Additionally, the DQLA offers extra statistical outputs in the streamwise wavenumber coordinates, enabling a comprehensive global analysis of this modelling approach. By comparing the DQLA results with DNS results, the limitations of the presented framework are discussed, mainly pertaining to the lack of the streak instability (or transient growth) mechanism and energy cascade from the linearised model. The DQLA is subsequently employed over a range of Reynolds numbers up to $Re_\tau = 10^5$. Overall, the turbulence statistics and spectra produced by the DQLA scale consistently with the available DNS and experimental data, with the Townsend–Perry constants displaying a mild Reynolds dependence (Hwang, Hutchins & Marusic, J. Fluid Mech., vol. 933, 2022, p. A8). The scaling behaviour of the turbulence intensity profiles deviates away from the classic $\ln (Re_\tau )$ scaling, following the inverse centreline velocity scaling for the higher Reynolds numbers.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abootorabi, S. & Zare, A. 2023 Model-based spectral coherence analysis. J. Fluid Mech. 958, A16.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M. 2017 Spectral analysis of near-wall turbulence in channel flow at $Re_\tau =4200$ with emphasis on the attached-eddy hypothesis. Phys. Rev. Fluids 2, 014603.CrossRefGoogle Scholar
del Álamo, J.C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. B/Fluids 47, 8096.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A: Fluid Dyn. 5 (3), 774777.CrossRefGoogle Scholar
Cess, R.D. 1958 A survey of the literature on heat transfer in turbulent tube flow. Westinghouse Research Rep. 8-0529.Google Scholar
Chen, X. & Sreenivasan, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall flows. J. Fluid Mech. 908, R3.CrossRefGoogle Scholar
Chevalier, M., Hœpffner, J., Bewley, T.R. & Henningson, D.S. 2006 State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech. 552, 167187.CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Doohan, P., Willis, A.P. & Hwang, Y. 2021 Minimal multi-scale dynamics of near-wall turbulence. J. Fluid Mech. 913, A8.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 1992 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (11), 26002609.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.CrossRefGoogle Scholar
Farrell, B.F., Ioannou, P.J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A. & Nikolaidis, M. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane poiseuille flow. J. Fluid Mech. 809, 290315.CrossRefGoogle Scholar
de Giovanetti, M., Sung, H.J. & Hwang, Y. 2017 Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483513.CrossRefGoogle Scholar
Gupta, V., Madhusudanan, A., Wan, M., Illingworth, S.J. & Juniper, M.P. 2021 Linear-model-based estimation in wall turbulence: improved stochastic forcing and eddy viscosity terms. J. Fluid Mech. 925, A18.CrossRefGoogle Scholar
Hall, P. & Sherwin, S.J. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hernández, C.G., Yang, Q. & Hwang, Y. 2022 a Generalised quasilinear approximations of turbulent channel flow. Part 1. Streamwise nonlinear energy transfer. J. Fluid Mech. 936, A33.CrossRefGoogle Scholar
Hernández, C.G., Yang, Q. & Hwang, Y. 2022 b Generalised quasilinear approximations of turbulent channel flow. Part 2. Spanwise triadic scale interactions. J. Fluid Mech. 944, A34.CrossRefGoogle Scholar
Herring, J.R. 1963 Investigation of problems in thermal convection. J. Atmos. Sci. 20 (4), 325338.2.0.CO;2>CrossRefGoogle Scholar
Herring, J.R. 1964 Investigation of problems in thermal convection: rigid boundaries. J. Atmos. Sci. 21 (3), 277290.2.0.CO;2>CrossRefGoogle Scholar
Herring, J.R. 1966 Some analytic results in the theory of thermal convection. J. Atmos. Sci. 23 (6), 672677.2.0.CO;2>CrossRefGoogle Scholar
Hœpffner, J., Chevalier, M., Bewley, T.R. & Henningson, D.S. 2005 State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech. 534, 263294.CrossRefGoogle Scholar
Holford, J.J., Lee, M. & Hwang, Y. 2023 Optimal white-noise stochastic forcing for linear models of turbulent channel flow. J. Fluid Mech. 961, A32.CrossRefGoogle Scholar
Hwang, Y. 2015 Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 767, 254289.CrossRefGoogle Scholar
Hwang, Y. 2016 Mesolayer of attached eddies in turbulent channel flow. Phys. Rev. Fluids 1 (6), 118.CrossRefGoogle Scholar
Hwang, Y. 2022 Scaling of near-wall streamwise turbulence intensity: from a viewpoint of attached eddy model. Bull. Am. Phys. Soc. Z22.00004.Google Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.CrossRefGoogle Scholar
Hwang, Y. & Eckhardt, B. 2020 Attached eddy model revisited using a minimal quasi-linear approximation. J. Fluid Mech. 894, A23.CrossRefGoogle Scholar
Hwang, Y., Hutchins, N. & Marusic, I. 2022 The logarithmic variance of streamwise velocity and $k^{-1}$ conundrum in wall turbulence. J. Fluid Mech. 933, A8.CrossRefGoogle Scholar
Illingworth, S.J., Monty, J.P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jovanović, M. & Bamieh, B. 2001 Modeling flow statistics using the linearized Navier–Stokes equations. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 5, pp. 4944–4949.Google Scholar
Jovanović, M.R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input–output viewpoint. Annu. Rev. Fluid Mech. 53, 311345.CrossRefGoogle Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Lozano-Durán, A., Constantinou, N.C., Nikolaidis, M.A. & Karp, M. 2021 Cause-and-effect of linear mechanisms sustaining wall turbulence. J. Fluid Mech. 914, 158.CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.CrossRefGoogle Scholar
Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2019 Coherent large-scale structures from the linearized Navier–Stokes equations. J. Fluid Mech. 873, 89109.CrossRefGoogle Scholar
Malkus, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A Math. Phys. Sci. 225 (1161), 196212.Google Scholar
Malkus, W.V.R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521539.CrossRefGoogle Scholar
Mantic̆-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.CrossRefGoogle ScholarPubMed
Mantic̆-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793, 777797.CrossRefGoogle Scholar
Marston, J.B., Chini, G.P. & Tobias, S.M. 2016 Generalized quasilinear approximation: application to zonal jets. Phys. Rev. Lett. 116, 214501.CrossRefGoogle ScholarPubMed
Marston, J.B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65 (6), 19551966.CrossRefGoogle Scholar
Marusic, I. & Kunkel, G.J. 2003 Streamwise turbulent intensity formulation for flat-plate boundary layers. Phys. Fluids 15 (8), 2461.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Monkewitz, P.A. & Nagib, H.M. 2015 Large-Reynolds-number asymptotics of the streamwise normal stress in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 783, 474503.CrossRefGoogle Scholar
Morra, P., Nogueira, P.A.S., Cavalieri, A.V.G. & Henningson, D.S. 2021 The colour of forcing statistics in resolvent analyses of turbulent channel flows. J. Fluid Mech. 907, A24.CrossRefGoogle Scholar
Morra, P., Semeraro, O., Henningson, D.S. & Cossu, C. 2019 On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969984.CrossRefGoogle Scholar
MOSEK ApS 2022 The MOSEK optimization toolbox for MATLAB manual. Version 10.0.Google Scholar
Nagib, H., Monkewitz, P.A. & Sreenivasan, K.R. 2022 Reynolds number required to accurately discriminate between proposed trends of peak normal stress in wall turbulence. Bull. Am. Phys. Soc. Q13.00006.Google Scholar
Nogueira, P.A.S., Morra, P., Martini, E., Cavalieri, A.V.G. & Henningson, D.S. 2020 Forcing statistics in resolvent analysis: application in minimal turbulent Couette flow. J. Fluid Mech. 908, A32.Google Scholar
Pausch, M., Yang, Q., Hwang, Y. & Eckhardt, B. 2019 Quasilinear approximation for exact coherent states in parallel shear flows. Fluid Dyn. Res. 51 (1), 011402.CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Perry, A.E., Henbest, S. & Chong, M.S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165 (-1), 163.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21, 015109.CrossRefGoogle Scholar
Ran, W., Zare, A. & Jovanović, M.R. 2021 Model-based design of riblets for turbulent drag reduction. J. Fluid Mech. 906, A7.CrossRefGoogle Scholar
Rosenberg, K. & McKeon, B.J 2019 Efficient representation of exact coherent states of the Navier–Stokes equations using resolvent analysis. Fluid Dyn. Res. 51 (1), 011401.CrossRefGoogle Scholar
Samie, M., Marusic, I., Hutchins, N., Fu, M.K., Fan, Y., Hultmark, M. & Smits, A.J. 2018 Fully resolved measurements of turbulent boundary layer flows up to $Re_{\tau }=20\,000$. J. Fluid Mech. 851, 391415.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer New York.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Skouloudis, N. & Hwang, Y. 2021 Scaling of turbulence intensities up to $Re_\tau = 10^6$ with a resolvent-based quasilinear approximation. Phys. Rev. Fluids 6 (3), 034602.CrossRefGoogle Scholar
Symon, S., Illingworth, S.J. & Marusic, I. 2021 Energy transfer in turbulent channel flows and implications for resolvent modelling. J. Fluid Mech. 911, A3.CrossRefGoogle Scholar
Symon, S., Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2022 On the use of eddy viscosity in resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8, 064601.Google Scholar
Thomas, V.L., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27 (10), 105104.CrossRefGoogle Scholar
Thomas, V.L., Lieu, B.K., Jovanović, M.R., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26 (10), 105112.CrossRefGoogle Scholar
Tobias, S.M. & Marston, J.B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502.CrossRefGoogle ScholarPubMed
Tobias, S.M. & Marston, J.B. 2017 Three-dimensional rotating Couette flow via the generalised quasilinear approximation. J. Fluid Mech. 810, 412428.CrossRefGoogle Scholar
Towne, A., Lozano-Durán, A. & Yang, X. 2019 Resolvent-based estimation of space-time flow statistics. J. Fluid Mech. 883, A17.Google Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Weideman, J.A.C. & Reddy, S.C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar