Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T18:37:09.611Z Has data issue: false hasContentIssue false

A data-driven approach to guide supersonic impinging jet control

Published online by Cambridge University Press:  27 December 2023

Spencer L. Stahl*
Affiliation:
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
Datta V. Gaitonde
Affiliation:
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
*
Email address for correspondence: stahl.174@osu.edu

Abstract

A data-driven framework using snapshots of an uncontrolled flow is proposed to identify, and subsequently demonstrate, effective control strategies for different objectives in supersonic impinging jets. The open-loop, feed-forward control approach, based on a dynamic mode decomposition reduced-order model (DMD-ROM), computes forcing receptivity in an economical manner by projecting flow and actuator-specific forcing snapshots onto a reduced subspace and then evolving the dynamics forwards in time. Since it effectively determines a linear response around the unsteady flow in the time domain, the method differs materially from typical techniques that use steady basic states, such as stability or input–output approaches that employ linearized Navier–Stokes operators in the frequency domain. The method presented naturally accounts for factors inherent to the snapshot basis, including configuration complexity and flow parameters such as Reynolds number. Furthermore, gain metrics calculated in the reduced subspace facilitate rapid assessments of flow sensitivities to a wide range of forcing parameters, from which optimal actuator inputs may be selected and results confirmed in scale-resolved simulations or experiments. The DMD-ROM approach is demonstrated from two different perspectives. The first concerns asymptotic feedback resonance, where the effects of harmonic pressure forcing are estimated and verified with nonlinear simulations using a blowing–suction actuator. The second examines time-local behaviour within critical feedback events, where the phase of actuation becomes important. For this, a conditional space–time mode is used to identify the optimal forcing phase that minimizes convective instability growth within the resonance cycle.

Type
JFM Rapids
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M.C. & Gaitonde, D.V. 2018 Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291341.CrossRefGoogle Scholar
Brunton, S.L. & Noack, B.R. 2015 Closed-loop turbulence control. Appl. Mech. Rev. 67 (5), 60.CrossRefGoogle Scholar
Crighton, D.G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.CrossRefGoogle Scholar
Deem, E.A., Cattafesta, L.N., Hemati, M.S., Zhang, H., Rowley, C. & Mittal, R. 2020 Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. J. Fluid Mech. 903, A21.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review. Intl J. Aeroacoust. 18 (21), 235240.CrossRefGoogle Scholar
Herrmann, B., Baddoo, P.J., Dawson, S.T.M., Semaan, R., Brunton, S.L. & McKeon, B.J. 2023 From resolvent to Gramians: extracting forcing and response modes for control. arXiv:2301.13093.Google Scholar
Herrmann, B., Baddoo, P.J., Semaan, R., Brunton, S.L. & Mckeon, B.J. 2021 Data-driven resolvent analysis. J. Fluid Mech. 918, 119.CrossRefGoogle Scholar
Illingworth, S.J., Morgans, A.S. & Rowley, C.W. 2012 Feedback control of cavity flow oscillations using simple linear models. J. Fluid Mech. 709, 223248.CrossRefGoogle Scholar
Juniper, M.P., Hanifi, A. & Theofilis, V. 2014 Modal stability theory. Appl. Mech. Rev. 66 (2), 024804.CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Theofilis, V., Schmid, P.J. & Soria, J. 2018 Linearised dynamicsand non-modal instability analysis of an impinging under-expanded supersonic jet. J. Phys.: Conf. Ser. 1001 (1).Google Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.CrossRefGoogle Scholar
Ranjan, R., Unnikrishnan, S. & Gaitonde, D. 2020 A robust approach for stability analysis of complex flows using high-order Navier–Stokes solvers. J. Comput. Phys. 403, 109076.CrossRefGoogle Scholar
Rosenfeld, J.A. & Kamalapurkar, R. 2021 Dynamic mode decomposition with control Liouville operators. IFAC-PapersOnLine 54 (9), 707712.CrossRefGoogle Scholar
Rowley, C.W. & Dawson, S.T.M 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmidt, O.T. & Schmid, P.J. 2019 A conditional space-time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, 112.CrossRefGoogle Scholar
Stahl, S.L., Prasad, C. & Gaitonde, D.V. 2022 A cause and effect modal decomposition framework for resonance instability. In 28th AIAA/CEAS Aeroacoustics 2022 Conference.CrossRefGoogle Scholar
Stahl, S.L., Prasad, C., Goparaju, H. & Gaitonde, D.V. 2023 Conditional space-time POD extensions for stability and prediction analysis. J. Comput. Phys. 492, 112433.CrossRefGoogle Scholar
Taira, K., Hemati, M.S., Brunton, S.L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S.T.M. & Yeh, C.A. 2020 Modal analysis of fluid flows: applications and outlook. AIAA J. 58 (3), 9981022.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar