Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:03:11.107Z Has data issue: false hasContentIssue false

Data assimilation method to de-noise and de-filter particle image velocimetry data

Published online by Cambridge University Press:  19 August 2019

Jurriaan J. J. Gillissen*
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
Roland Bouffanais
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
Dick K. P. Yue
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Email address for correspondence: jurriaangillissen@gmail.com

Abstract

We present a variational data assimilation method in order to improve the accuracy of velocity fields $\tilde{\boldsymbol{v}}$, that are measured using particle image velocimetry (PIV). The method minimises the space–time integral of the difference between the reconstruction $\boldsymbol{u}$ and $\tilde{\boldsymbol{v}}$, under the constraint, that $\boldsymbol{u}$ satisfies conservation of mass and momentum. We apply the method to synthetic velocimetry data, in a two-dimensional turbulent flow, where realistic PIV noise is generated by computationally mimicking the PIV measurement process. The method performs optimally when the assimilation integration time is of the order of the flow correlation time. We interpret these results by comparing them to one-dimensional diffusion and advection problems, for which we derive analytical expressions for the reconstruction error.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. M. & Thomas, A. Jr 1988 Spectral Methods in Fluid Dynamics. Springer.10.1007/978-3-642-84108-8Google Scholar
Foures, D. P. G., Dovetta, N., Sipp, D. & Schmid, P. J. 2014 A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction. J. Fluid Mech. 759, 404431.10.1017/jfm.2014.566Google Scholar
Gillissen, J. J. J., Vilquin, A., Kellay, H., Bouffanais, R. & Yue, D. K. P. 2018 A space–time integral minimisation method for the reconstruction of velocity fields from measured scalar fields. J. Fluid Mech. 854, 348366.10.1017/jfm.2018.559Google Scholar
Gronskis, A., Heitz, D. & Mémin, E. 2013 Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation. J. Comput. Phys. 242, 480497.10.1016/j.jcp.2013.01.051Google Scholar
Gunzburger, M. D. 2003 Perspectives in Flow Control and Optimization. SIAM.Google Scholar
Humphrey, J. A. C. 1993 Interactive computational-experimental methodologies (ICEME) for thermofluids research: application to the optimized packaging of heated electronic components. In Computers and Computing in Heat Transfer Science and Engineering (ed. Yang, K. T. & Nakayama, W.), pp. 293317. CRC and Begell House.Google Scholar
Mons, V., Chassaing, J.-C., Gomez, T. & Sagaut, P. 2016 Reconstruction of unsteady viscous flows using data assimilation schemes. J. Comput. Phys. 316, 255280.10.1016/j.jcp.2016.04.022Google Scholar
Ruhnau, P., Kohlberger, T., Schnörr, C. & Nobach, H. 2005 Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38 (1), 2132.10.1007/s00348-004-0880-5Google Scholar
Ruhnau, P., Stahl, A. & Schnörr, C. 2007 Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas. Sci. Technol. 18 (3), 755763.10.1088/0957-0233/18/3/027Google Scholar
Scarano, F. 2012 Tomographic PIV: principles and practice. Meas. Sci. Technol. 24 (1), 012001.Google Scholar
Shats, M. G., Xia, H., Punzmann, H. & Falkovich, G. 2007 Suppression of turbulence by self-generated and imposed mean flows. Phys. Rev. Lett. 99 (16), 164502.10.1103/PhysRevLett.99.164502Google Scholar
Suzuki, T. 2012 Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation. J. Fluid Mech. 709, 249288.10.1017/jfm.2012.334Google Scholar
Symon, S., Dovetta, N., McKeon, B. J., Sipp, D. & Schmid, P. J. 2017 Data assimilation of mean velocity from 2D PIV measurements of flow over an idealized airfoil. Exp. Fluids 58 (5), 61.10.1007/s00348-017-2336-8Google Scholar
Talagrand, O. & Courtier, P. 1987 Variational assimilation of meteorological observations with the adjoint vorticity equation. I. Theory. Q. J. R. Meteorol. Soc. 113 (478), 13111328.10.1002/qj.49711347812Google Scholar
Tikhonov, A. N. & Arsenin, V. Y. 1977 Solutions of Ill-Posed Problems. Winston.Google Scholar