Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-05T07:54:03.188Z Has data issue: false hasContentIssue false

Curved detonation and its reflections

Published online by Cambridge University Press:  01 April 2024

Hao Yan
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Xin Han
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Haochen Xiong
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Chongguang Shi
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Yancheng You*
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
*
Email address for correspondence: yancheng.you@xmu.edu.cn

Abstract

This paper investigates the effect of curvature on curved detonation and its reflections. Specifically, the study focuses on two aspects: the effect of curvature on the postwave parameters and their gradients, and the stabilization of Mach reflection. Relationships are established between the curvature and the gradients of the postwave parameters, thus providing a basis for examining detonation reflections and obtaining a comprehensive understanding of curved detonation. In particular, these relationships offer a valuable analytical tool to predict the postwave gradients, as well as providing a fresh perspective to understand the transformation from Mach reflection to regular reflection in curved detonation. The validity of these relationships is confirmed by comparison with simulation results. Two mechanisms by which curvature influences the stationarity of Mach reflection are identified. An increase in wave angle and interference between wave systems leading to the generation and integration of subsonic zones are the reasons for the non-stationarity of the Mach reflection in curved detonation. Besides, the effect mechanisms of choked flow which is considered to be the root cause are analysed in detail. On the basis of a theoretical model, the development of a quantitative criterion for the stability of detonation reflection is proposed, and its validity is confirmed by simulations. This criterion is used in a comprehensive investigation of the primary factors affecting the stability of detonation wave reflections, providing insights that will be of great value for the further development of detonation engines.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ben-Dor, G. 1992 Shock Wave Reflection Phenomena. Springer.CrossRefGoogle Scholar
Choi, J.-Y., Kim, D.-W., Jeung, I.-S., Ma, F. & Yang, V. 2007 Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31 (2), 24732480.CrossRefGoogle Scholar
Choi, J.Y., Ma, F.H. & Yang, V. 2008 Some numerical issues on simulation of detonation cell structures. Combust. Explos. Shock Waves 44 (5), 560578.CrossRefGoogle Scholar
Choi, J.-Y., Shin, J.-R. & Jeung, I.-S. 2009 Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave. Proc. Combust. Inst. 32 (2), 23872396.CrossRefGoogle Scholar
Fang, Y., Zhang, Y., Deng, X. & Teng, H. 2019 Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures. Phys. Fluids 31 (2), 026108.CrossRefGoogle Scholar
Gordon, S. & McBride, B.J. 1976 Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations. Interim Revision, March 1976. NASA SP-273. NASA.Google Scholar
Gordon, S. & McBride, B.J. 1994 Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: analysis. NASA Reference Publication 1311. NASA.Google Scholar
Guo, C., Zhang, D. & Xie, W. 2001 The Mach reflection of a detonation based on soot track measurements. Combust. Flame 127 (3), 20512058.Google Scholar
Gupta, A.K. & Schwer, D.A. 2018 Rotating detonation engine concept: direct combustion of supersonic inflow. J. Propul. Power 34 (2), 562564.CrossRefGoogle Scholar
He, X. & Karagozian, A.R. 2003 Numerical simulation of pulse detonation engine phenomena. J. Sci. Comput. 19 (1/3), 201224.CrossRefGoogle Scholar
Hornung, H.G. & Robinson, M.L. 1982 Transition from regular to Mach reflection of shock waves. Part 2. The steady-flow criterion. J. Fluid Mech. 123, 155164.CrossRefGoogle Scholar
Jachimowski, C.J. 1988 An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion. NASA Technical Paper 2791.Google Scholar
Kailasanath, K. 2011 The rotating detonation-wave engine concept: a brief status report. In AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA 2011-580.CrossRefGoogle Scholar
Lee, J.H.S. 2008 The Detonation Phenomenon. Cambridge University Press.CrossRefGoogle Scholar
Li, J., Ning, J. & Lee, J.H.S. 2015 Mach reflection of a ZND detonation wave. Shock Waves 25, 293304.CrossRefGoogle Scholar
Li, J., Pan, J., Jiang, C., Shi, X., Zhu, Y. & Quaye, E.K. 2022 Numerical study on detonation reflections over concave and convex double wedges. Intl J. Hydrogen Energy 47 (38), 1703317044.CrossRefGoogle Scholar
Li, J., Pan, J., Jiang, C., Zhu, Y. & Ojo, A.O. 2021 a Numerical investigation on cellular detonation reflection over wedges with rounded corner. Acta Astronaut. 181, 503515.CrossRefGoogle Scholar
Li, J., Pan, J., Jiang, C., Zhu, Y. & Quaye, E.K. 2021 b Numerical simulation of detonation reflections over cylindrical convex–straight coupled surfaces. Intl J. Hydrogen Energy 46 (63), 3227332283.CrossRefGoogle Scholar
Mach, E. 1878 Uber den Verlauf von Funkenwellen in der Ebene undim Raume. Sitz. ber. Akad. Wien 78, 819838.Google Scholar
von Neumann, J. 1943 Oblique reflection of shock waves. In John von Neumann Collected Works. Pergamon.Google Scholar
von Neumann, J. 1945 Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-45. Navy Bureau of Ordnance.Google Scholar
Ohyagi, S., Obara, T., Nakata, F. & Hoshi, S. 2000 A numerical simulation of reflection processes of a detonation wave on a wedge. Shock Waves 10 (3), 185190.CrossRefGoogle Scholar
Ong, R.S.B. 1956 On the interaction of a Chapman–Jouguet detonation wave with a wedge. PhD thesis, University of Michigan.Google Scholar
Teng, H.H. & Jiang, Z.L. 2012 On the transition pattern of the oblique detonation structure. J. Fluid Mech. 713, 659669.CrossRefGoogle Scholar
Thomas, G.O. & Williams, R.L. 2002 Detonation interaction with wedges and bends. Shock Waves 11, 481492.CrossRefGoogle Scholar
Wang, K., Zhang, Z., Yang, P. & Teng, H. 2020 Numerical study on reflection of an oblique detonation wave on an outward turning wall. Phys. Fluids 32 (4), 046101.CrossRefGoogle Scholar
Wang, Y., Chen, Z. & Chen, H. 2021 Diffraction of weakly unstable detonation through an obstacle with different sizes and shapes. Phys. Rev. Fluids 6 (4), 043201.CrossRefGoogle Scholar
Wilson, G.J. & MacCormack, R.W. 1992 Modeling supersonic combustion using a fully implicit numerical method. AIAA J. 30 (4), 10081015.CrossRefGoogle Scholar
Xiang, G., Zhang, Y., Tu, Q., Gao, Y., Huang, X. & Peng, T. 2022 The initiation characteristics of oblique detonation waves induced by a curved surface. Aerosp. Sci. Technol. 128, 107743.CrossRefGoogle Scholar
Yu, M. & Miao, S. 2018 Initiation characteristics of wedge-induced oblique detonation waves in turbulence flows. Acta Astronaut. 147, 195204.CrossRefGoogle Scholar
Zhang, B., Liu, H. & Li, Y. 2019 The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures. Fuel 253, 305310.CrossRefGoogle Scholar
Zhang, Z., Liu, Y. & Wen, C. 2022 a Mechanisms of the destabilized Mach reflection of inviscid oblique detonation waves before an expansion corner. J. Fluid Mech. 940, A29.CrossRefGoogle Scholar
Zhang, Z., Wen, C., Zhang, W., Liu, Y. & Jiang, Z. 2022 b A theoretical method for solving shock relations coupled with chemical equilibrium and its applications. Chin. J. Aeronaut. 35 (6), 4762.CrossRefGoogle Scholar