Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-07T01:48:38.789Z Has data issue: false hasContentIssue false

Critical levels in a jet-type flow

Published online by Cambridge University Press:  20 April 2006

Hector Teitelbaum
Affiliation:
Laboratoire de Météorologie Dynamique du C.N.R.S., École Polytechnique, 91128 Palaisseau Cedex, France
Hennie Kelder
Affiliation:
Royal Netherlands Meteorological Institute, Division of Geophysics, P.O. Box 201, 3730 Ae de Bilt, The Netherlands

Abstract

The reflection and transmission of a gravity wave propagating through a jet-type background flow is studied. Only the linear, non-dissipative case is treated, and the hydrostatic approximation used in a stratified non-rotating medium. The behaviour of the gravity wave in the presence of two or one critical levels is investigated. In the first case, i.e. two critical levels, it is found that for high values of the Richardson number the wave is highly attenuated. For sufficiently low values of the Richardson number overreflection and overtransmission occur. It is demonstrated that a wave generated below the jet and propagating upward takes energy from the mean flow at the upper critical level for all values of the Richardson number. The single critical level has been studied as a limiting case of two merging critical levels. In this approach it is found that the wave is not transmitted and no overreflection can occur.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. G. & Mcintyre, M. E. 1978 On wave action and its relatives. J. Fluid Mech. 89, 647664.Google Scholar
Baldwin, P. & Roberts, P. H. 1970 The critical layer in stratified shear flow. Mathematika 17, 102119.Google Scholar
Booker, J. R. & Bretherton, F. P. 1967 The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27, 513529.Google Scholar
Bretherton, F. P. 1969 Momentum transport by gravity waves. Q. J. R. Met. Soc. 95, 213243.Google Scholar
Brown, S. N. & Stewartson, K. 1980 On the nonlinear reflection of a gravity wave at a critical level. Part 1. J. Fluid Mech. 100, 577595.Google Scholar
Brown, S. N. & Stewartson, K. 1982a On the nonlinear reflection of a gravity wave at a critical level. Part 2. J. Fluid Mech. 115, 217230.Google Scholar
Brown, S. N. & Stewartson, K. 1982b On the nonlinear reflection of a gravity wave at a critical level. Part 3. J. Fluid Mech. 115, 231250.Google Scholar
Bulrisch, R. & Stoer, J. 1966 Numerical treatment of ordinary differential equations. Num. Math. 8, 113.Google Scholar
Drazin, P. G., Zaturska, M. B. & Banks, W. H. H. 1979 On the normal modes of parallel flow of inviscid stratified fluid. Part 2. J. Fluid Mech. 95, 681705.Google Scholar
Eliassen, A. & Palm, E. 1962 On the transfer of energy in stationary mountain waves. Geofys. Publ. 22, 3.Google Scholar
Eltayeb, I. A. & Mckenzie, J. F. 1975 Critical-level behaviour and wave amplification of a gravity wave incident upon a shear layer. J. Fluid Mech. 72, 661671.Google Scholar
Erdélyi, A. Et Al. 1953 Higher Transcendental Functions, I, II and III. McGraw-Hill.
Fritts, D. C. 1978 The nonlinear gravity wave critical-level interaction. J. Atmos. Sci. 35, 397413.Google Scholar
Fritts, D. C. 1982 The transient critical-level interaction in a Boussinesq fluid. J. Geophys. Res. 87, 79978016.Google Scholar
Fritts, D. C. & Geller, M. A. 1976 Viscous stabilization of gravity wave critical level flows. J. Atmos. Sci. 33, 22762284.Google Scholar
Geller, M. A., Tanaka, H. & Fritts, D. C. 1975 Production of turbulence in the vicinity of critical levels for internal gravity waves. J. Atmos. Sci. 32, 21252135.Google Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic.
Grimshaw, R. 1980 A general theory of critical level absorption and valve effects for linear wave propagation. Geophys. Astrophys. Fluid Dyn. 14, 303326.Google Scholar
Grimshaw, R. 1984 Wave action and wave–mean flow interaction, with application to stratified shear flow. Ann. Rev. Fluid Mech. 16, 1144.Google Scholar
Hazel, P. 1967 The effect of viscosity and heat conduction on internal gravity waves at a critical level. J. Fluid Mech. 30, 775783.Google Scholar
Hines, C. O. & Reddy, C. A. 1967 On the propagation of gravity waves through a region of wind shear. J. Geophys. Res. 72, 10151034.Google Scholar
Holton, J. R. 1975 The Dynamic Meteorology of the Stratosphere and Mesosphere. Lancaster.
Jones, W. L. 1968 Reflexion and stability of waves in stably stratified fluid with shear flow: a numerical study. J. Fluid Mech. 34, 609624.Google Scholar
Lindzen, R. S. 1973 Wave mean flow interaction in the upper atmosphere. Boundary-Layer Met. 4, 327343.Google Scholar
Lindzen, R. S. & Rosenthal, A. J. 1983 Instabilities in a stratified fluid having one critical level. Part III: Kelvin Helmholtz instabilities as overreflected waves. J. Atmos. Sci. 40, 530542.Google Scholar
Meixner, J. & Schäfke, F. W. 1954 Mathieusche Funktionen und Sphäroidfunktionen. Springer.
Orlanski, I. 1981 The quasihydrostatic approximation. J. Atmos. Sci. 38, 572582.Google Scholar
Rosenthal, A. J. & Lindzen, R. S. 1983a Instabilities in a stratified fluid having one critical level. Part I: Results. J. Atmos. Sci. 40, 509520.Google Scholar
Rosenthal, A. J. & Lindzen, R. S. 1983b Instabilities in a stratified fluid having one critical level. Part II: Explanation of gravity wave instabilities using the concept of overreflection. J. Atmos. Sci. 40, 521529.Google Scholar
Teitelbaum, H. & Sidi, C. 1979 Discontinuity formation due to gravity wave propagation in a shear layer. Phys. Fluids 22, 209213.Google Scholar
Van Duin, C. A. & Kelder, H. 1982 Reflection properties of internal gravity waves incident upon a hyperbolic tangent shear layer. J. Fluid Mech. 120, 505521.Google Scholar