Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T06:34:34.409Z Has data issue: false hasContentIssue false

Coupled bulk and interfacial transport of surfactants governs the settling of a drop towards a wall

Published online by Cambridge University Press:  24 May 2024

Sayali N. Jadhav
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
Shubhadeep Mandal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
Uddipta Ghosh*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
*
Email address for correspondence: uddipta.ghosh@iitgn.ac.in

Abstract

Surfactant-like impurities are omnipresent in multiphase emulsions and may substantially affect the motion of small droplets by altering their interfacial properties. Usually these surfactants are soluble in the bulk and undergo adsorption–desorption onto the interface which modifies their surface concentration and hence their overall influence on droplet motion. Yet, the impact of the bulk solubility and transport of surfactants on droplet dynamics, especially in the presence of bounding walls, remains poorly understood. As such, in this article, we assess the impact of bulk soluble surfactants on the settling of a spherical drop towards a plane wall. We consider coupled bulk and interfacial transport of surfactants, mediated by adsorption–desorption processes and construct a semi-analytical framework for arbitrary values of ‘bulk interaction parameter’, which dictates the strength of adsorption–desorption kinetics compared with bulk diffusion. Our results indicate that while mass exchange between the bulk and the interface can remobilize the drop, a finite bulk diffusion rate restricts this process and therefore slows down the drop. This also results in bulk concentration depletion near the south pole and accumulation near the north pole, the extent of which becomes strongly asymmetric with an enhanced intensity of depletion, as the drop approaches the wall. Presence of the wall and bulk solubility are found to aid each other towards remobilizing the drop by aptly modifying the interfacial concentration. Our results may provide fundamental insights into the kinetics of surfactant-laden drops, with potential applications in food and pharmaceutical industries, separation processes, etc.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A.W. & Gast, A.P. 1967 Physical Chemistry of Surfaces, vol. 150. Interscience Publishers.Google Scholar
Agrawal, S.K. & Wasan, D.T. 1979 The effect of interfacial viscosities on the motion of drops and bubbles. Chem. Engng J. 18 (3), 215223.CrossRefGoogle Scholar
Barton, K.D. & Subramanian, R.S. 1990 Thermocapillary migration of a liquid drop normal to a plane surface. J. Colloid Interface Sci. 137 (1), 170182.CrossRefGoogle Scholar
de Blois, C., Reyssat, M., Michelin, S. & Dauchot, O. 2019 Flow field around a confined active droplet. Phys. Rev. Fluids 4 (5), 054001.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3–4), 242251.CrossRefGoogle Scholar
Brummer, R. 2006 Rheology Essentials of Cosmetic and Food Emulsions. Springer.Google Scholar
Castonguay, A.C., Kailasham, R., Wentworth, C.M., Meredith, C.H., Khair, A.S. & Zarzar, L.D. 2023 Gravitational settling of active droplets. Phys. Rev. E 107 (2), 024608.CrossRefGoogle ScholarPubMed
Chakraborty, G., Pramanik, S. & Ghosh, U. 2023 Interplay of bulk soluble surfactants and interfacial kinetics governs the stability of two-layer channel flows. Soft Matt. 19 (41), 80118021.CrossRefGoogle ScholarPubMed
Chen, J. & Stebe, K.J. 1996 Marangoni retardation of the terminal velocity of a settling droplet: the role of surfactant physico-chemistry. J. Colloid Interface Sci. 178 (1), 144155.CrossRefGoogle Scholar
Dams, S.S. & Walker, I.M. 1987 Multiple emulsions as targetable delivery systems. In Methods in Enzymology, vol. 149, pp. 51–64. Elsevier.CrossRefGoogle Scholar
Dandekar, R. & Ardekani, A.M. 2020 Effect of interfacial viscosities on droplet migration at low surfactant concentrations. J. Fluid Mech. 902, A2.CrossRefGoogle Scholar
Das, S., Mandal, S. & Chakraborty, S. 2018 Effect of temperature gradient on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow. J. Fluid Mech. 835, 170216.CrossRefGoogle Scholar
Das, S., Mandal, S., Som, S.K. & Chakraborty, S. 2017 Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Phys. Fluids 29 (1), 012002.Google Scholar
Desai, N. & Michelin, S. 2021 Instability and self-propulsion of active droplets along a wall. Phys. Rev. Fluids 6 (11), 114103.CrossRefGoogle Scholar
Dickinson, E. 2011 Double emulsions stabilized by food biopolymers. Food Biophys. 6 (1), 111.CrossRefGoogle Scholar
Eggleton, C.D. & Stebe, K.J. 1998 An adsorption–desorption-controlled surfactant on a deforming droplet. J. Colloid Interface Sci. 208 (1), 6880.CrossRefGoogle ScholarPubMed
Elfring, G.J., Leal, L.G. & Squires, T.M. 2016 Surface viscosity and marangoni stresses at surfactant laden interfaces. J. Fluid Mech. 792, 712739.CrossRefGoogle Scholar
Ferri, J.K. & Stebe, K.J. 2000 Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Colloid Interface Sci. 85 (1), 6197.CrossRefGoogle ScholarPubMed
Frising, T., Noïk, C. & Dalmazzone, C. 2006 The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review. J. Dispers. Sci. Technol. 27 (7), 10351057.CrossRefGoogle Scholar
Haber, S. & Hetsroni, G. 1971 The dynamics of a deformable drop suspended in an unbounded Stokes flow. J. Fluid Mech. 49 (2), 257277.CrossRefGoogle Scholar
Haber, S. & Hetsroni, G. 1972 Hydrodynamics of a drop submerged in an unbounded arbitrary velocity field in the presence of surfactants. Appl. Sci. Res. 25, 215233.CrossRefGoogle Scholar
Hadamard, M.J. 1911 Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquid visqueux. C. R. Acad. Sci. 152, 17351738.Google Scholar
Hanna, J.A. & Vlahovska, P.M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.CrossRefGoogle Scholar
Holbrook, J.A. & Levan, M.D. 1983 a Retardation of droplet motion by surfactant. Part 1. Theoretical development and asymptotic solutions. Chem. Engng Commun. 20 (3–4), 191207.CrossRefGoogle Scholar
Holbrook, J.A. & Levan, M.D. 1983 b Retardation of droplet motion by surfactant. Part 2. Numerical solutions for exterior diffusion, surface diffusion, and adsorption kinetics. Chem. Engng Commun. 20 (5–6), 273290.CrossRefGoogle Scholar
Iqbal, M., Zafar, N., Fessi, H. & Elaissari, A. 2015 Double emulsion solvent evaporation techniques used for drug encapsulation. Intl J. Pharm. 496 (2), 173190.CrossRefGoogle ScholarPubMed
Jadhav, S.N. & Ghosh, U. 2021 a Effect of surfactant on the settling of a drop towards a wall. J. Fluid Mech. 912, A4.CrossRefGoogle Scholar
Jadhav, S.N. & Ghosh, U. 2021 b Thermocapillary effects on eccentric compound drops in Poiseuille flows. Phys. Rev. Fluids 6 (7), 073602.CrossRefGoogle Scholar
Jadhav, S.N. & Ghosh, U. 2022 Effect of interfacial kinetics on the settling of a drop in a viscous medium. Phys. Fluids 34 (4), 042007.CrossRefGoogle Scholar
Jeffery, G.B. 1912 On a form of the solution of Laplace's equation suitable for problems relating to two spheres. Proc. R. Soc. Lond. Ser. A, Contain. Papers Math. Phys. Character 87 (593), 109120.Google Scholar
Jin, F., Balasubramaniam, R. & Stebe, K.J. 2004 Surfactant adsorption to spherical particles: the intrinsic length scale governing the shift from diffusion to kinetic-controlled mass transfer. J. Adhes. 80 (9), 773796.CrossRefGoogle Scholar
Kilic, M.S., Bazant, M.Z. & Ajdari, A. 2007 Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75 (2), 021503.CrossRefGoogle ScholarPubMed
Lamba, H., Sathish, K. & Sabikhi, L. 2015 Double emulsions: emerging delivery system for plant bioactives. Food Bioproc. Tech. 8, 709728.CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Levich, V.G. & Krylov, V.S. 1969 Surface-tension-driven phenomena. Annu. Rev. Fluid Mech. 1 (1), 293316.CrossRefGoogle Scholar
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.CrossRefGoogle Scholar
Lippera, K., Benzaquen, M. & Michelin, S. 2020 a Bouncing, chasing, or pausing: asymmetric collisions of active droplets. Phys. Rev. Fluids 5 (3), 032201.CrossRefGoogle Scholar
Lippera, K., Morozov, M., Benzaquen, M. & Michelin, S. 2020 b Collisions and rebounds of chemically active droplets. J. Fluid Mech. 886, A17.CrossRefGoogle Scholar
Mandal, S., Ghosh, U. & Chakraborty, S. 2016 Effect of surfactant on motion and deformation of compound droplets in arbitrary unbounded Stokes flows. J. Fluid Mech. 803, 200249.CrossRefGoogle Scholar
Manikantan, H. & Squires, T.M. 2017 Irreversible particle motion in surfactant-laden interfaces due to pressure-dependent surface viscosity. Proc. R. Soc. A: Math. Phys. Engng Sci. 473 (2205), 20170346.CrossRefGoogle ScholarPubMed
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892, P1.CrossRefGoogle ScholarPubMed
Manor, O., Lavrenteva, O. & Nir, A. 2008 Effect of non-homogeneous surface viscosity on the marangoni migration of a droplet in viscous fluid. J. Colloid Interface Sci. 321 (1), 142153.CrossRefGoogle ScholarPubMed
Michelin, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55, 77101.CrossRefGoogle Scholar
Milliken, W.J., Stone, H.A. & Leal, L.G. 1993 The effect of surfactant on the transient motion of Newtonian drops. Phys. Fluids A: Fluid Dyn. 5 (1), 6979.CrossRefGoogle Scholar
Morozov, M. 2020 Adsorption inhibition by swollen micelles may cause multistability in active droplets. Soft Matt. 16 (24), 56245632.CrossRefGoogle ScholarPubMed
Muradoglu, M. & Tryggvason, G. 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227 (4), 22382262.CrossRefGoogle Scholar
Pak, O.S., Feng, J. & Stone, H.A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.CrossRefGoogle Scholar
Pal, R. 1992 Rheological behaviour of concentrated surfactant solutions and emulsions. Colloids Surf. 64 (3–4), 207215.CrossRefGoogle Scholar
Pal, R. 2007 Rheology of double emulsions. J. Colloid Interface Sci. 307 (2), 509515.CrossRefGoogle ScholarPubMed
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2018 Sedimentation of a surfactant-laden drop under the influence of an electric field. J. Fluid Mech. 849, 277311.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 Electrical switching of a surfactant coated drop in Poiseuille flow. J. Fluid Mech. 870, 2766.CrossRefGoogle Scholar
Pozrikidis, C. 1990 The deformation of a liquid drop moving normal to a plane wall. J. Fluid Mech. 215, 331363.CrossRefGoogle Scholar
Rushton, E. & Davies, G.A. 1973 The slow unsteady settling of two fluid spheres along their line of centres. Appl. Sci. Res. 28, 3761.CrossRefGoogle Scholar
Rybczynski, W. 1911 Uber die fortschreitende bewegung einer flussigen kugel in einem zahen medium. Bull. Acad. Sci. Cracovie A 1, 4046.Google Scholar
Schwalbe, J.T., Phelan, F.R. Jr., Vlahovska, P.M. & Hudson, S.D. 2011 Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matt. 7 (17), 77977804.CrossRefGoogle Scholar
Sengupta, R., Walker, L.M. & Khair, A.S. 2018 Effective viscosity of a dilute emulsion of spherical drops containing soluble surfactant. Rheol. Acta 57, 481491.CrossRefGoogle Scholar
Stebe, K.J. & Barthes-Biesel, D. 1995 Marangoni effects of adsorption–desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary. J. Fluid Mech. 286, 2548.CrossRefGoogle Scholar
Stimson, M. & Jeffery, G.B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 111 (757), 110116.Google Scholar
Stone, H.A. & Leal, L.G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Tasoglu, S., Demirci, U. & Muradoglu, M. 2008 The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Phys. Fluids 20 (4), 040805.CrossRefGoogle Scholar
Taylor, T.D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18 (3), 466476.CrossRefGoogle Scholar
Tsemakh, D., Lavrenteva, O.M. & Nir, A. 2004 On the locomotion of a drop, induced by the internal secretion of surfactant. Intl J. Multiphase Flow 30 (11), 13371367.CrossRefGoogle Scholar
Varvaresou, A. & Iakovou, K. 2015 Biosurfactants in cosmetics and biopharmaceuticals. Lett. Appl. Microbiol. 61 (3), 214223.CrossRefGoogle ScholarPubMed
Venkataramani, D., Tsulaia, A. & Amin, S. 2020 Fundamentals and applications of particle stabilized emulsions in cosmetic formulations. Adv. Colloid Interface Sci. 283, 102234.CrossRefGoogle Scholar
Vlahovska, P.M., Bławzdziewicz, J. & Loewenberg, M. 2009 Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. 624, 293337.CrossRefGoogle Scholar
Vlahovska, P.M., Loewenberg, M. & Blawzdziewicz, J. 2005 Deformation of a surfactant-covered drop in a linear flow. Phys. Fluids 17 (10), 103103.CrossRefGoogle Scholar
Wacholder, E. & Weihs, D. 1972 Slow motion of a fluid sphere in the vicinity of another sphere or a plane boundary. Chem. Engng Sci. 27 (10), 18171828.CrossRefGoogle Scholar
Wang, Y., Papageorgiou, D.T. & Maldarelli, C. 1999 Increased mobility of a surfactant-retarded bubble at high bulk concentrations. J. Fluid Mech. 390, 251270.CrossRefGoogle Scholar
Wasan, D.T., Shah, S.M., Aderangi, N., Chan, M.S. & McNamara, J.J. 1978 Observations on the coalescence behavior of oil droplets and emulsion stability in enhanced oil recovery. Soc. Petrol. Engrs J. 18 (6), 409417.CrossRefGoogle Scholar
Wong, H., Rumschitzki, D. & Maldarelli, C. 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8 (11), 32033204.CrossRefGoogle Scholar
Zell, Z.A., Nowbahar, A., Mansard, V., Leal, L.G., Deshmukh, S.S., Mecca, J.M., Tucker, C.J. & Squires, T.M. 2014 Surface shear inviscidity of soluble surfactants. Proc. Natl Acad. Sci. 111 (10), 36773682.CrossRefGoogle ScholarPubMed
Zhang, Y., Chan, H.F. & Leong, K.W. 2013 Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65 (1), 104120.CrossRefGoogle ScholarPubMed
Zhou, Y., Yin, D., Chen, W., Liu, B. & Zhang, X. 2019 A comprehensive review of emulsion and its field application for enhanced oil recovery. Energy Sci. Engng 7 (4), 10461058.CrossRefGoogle Scholar
Supplementary material: File

Jadhav et al. supplementary material

Jadhav et al. supplementary material
Download Jadhav et al. supplementary material(File)
File 720.4 KB