Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-24T23:43:54.329Z Has data issue: false hasContentIssue false

Computational prediction and analysis of rotor noise generation in a turbulent wake

Published online by Cambridge University Press:  07 December 2020

Junye Wang
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556, USA
Kan Wang
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556, USA
Meng Wang*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556, USA
*
Email address for correspondence: m.wang@nd.edu

Abstract

Large-eddy simulation is combined with the Ffowcs Williams–Hawkings equation to investigate the noise generation by a 10-bladed rotor ingesting the turbulent wake of a circular cylinder in a low-Mach-number flow. Two rotor advance ratios corresponding to zero thrust and a thrusting condition are considered. The computed sound pressure levels agree well with the experimental measurements at Virginia Tech over a wide range of frequencies. The broadband acoustic spectra exhibit a strong tonal peak at the cylinder vortex-shedding frequency, a second peak at the rotor blade passing frequency, and a minor peak at the trailing-edge vortex-shedding frequency. Consistent with experimental results, the rotor at the thrusting advance ratio produces stronger sound than that at zero thrust. The blade acoustic dipole strength increases with the radial distance to the hub until near the blade tip. Fluctuating velocities in the wake are responsible for virtually all the rotor acoustic response except at the blade-passing frequency, where the mean wake velocity defect also makes a strong contribution. Blade-to-blade correlations and coherence of dipole sources are relatively weak. The classical Sears theory is shown to provide a reasonable prediction of the rotor turbulence-ingestion noise at the important mid-frequencies, based on which the appropriate Mach number scaling for the ingestion noise is identified. Distortions of wake turbulence by the rotor are found to be relatively small, and including their effect on the upwash velocity only slightly improves the Sears theory prediction.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, W. N., Devenport, W. J. & Glegg, S. A. L. 2017 Noise from a rotor ingesting a thick boundary layer and relation to measurements of ingested turbulence. J. Sound Vib. 409, 227240.CrossRefGoogle Scholar
Alexander, W. N., Devenport, W. J., Morton, M. A. & Glegg, S. A. L. 2013 Noise from a rotor ingesting a planar turbulent boundary layer. AIAA Paper 2013-2285.CrossRefGoogle Scholar
Alexander, W. N., Devenport, W. J., Wisda, D., Morton, M. A. & Glegg, S. A. L. 2014 Sound radiated from a rotor and its relation to rotating frame measurements of ingested turbulence. AIAA Paper 2014-2746.CrossRefGoogle Scholar
Alexander, W. N., Molinaro, N., Hickling, C., Murray, H., Devenport, W. J. & Glegg, S. A. L. 2016 Phased array measurements of a rotor ingesting a turbulent shear flow. AIAA Paper 2016-2994.CrossRefGoogle Scholar
Amiet, R. K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41, 407420.CrossRefGoogle Scholar
Amiet, R. K. 1976 Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47, 387393.CrossRefGoogle Scholar
Arroyo, C. P., Leonard, T., Sanjose, M., Moreau, S. & Duchaine, F. 2019 Large eddy simulation of a scale-model turbofan for fan noise source diagnostic. J. Sound Vib. 445, 6476.CrossRefGoogle Scholar
Beddhu, M., Taylor, L. K. & Whitfield, D. L. 1996 Strong conservative form of the incompressible Navier–Stokes equations in a rotating frame with a solution procedure. J. Comput. Phys. 128, 427437.CrossRefGoogle Scholar
Blake, W. K. 2017 Mechanics of Flow-Induced Sound and Vibration, vols. I and II, 2nd edn. Academic Press.Google Scholar
Brentner, K. S. & Farassat, F. 2003 Modeling aerodynamically generated sound of helicopter rotors. Prog. Aerosp. Sci. 39, 83120.CrossRefGoogle Scholar
Carolus, T., Schneider, M. & Reese, H. 2007 Axial flow fan broad-band noise and prediction. J. Sound Vib. 300, 5070.CrossRefGoogle Scholar
Casalino, D., Hazir, A. & Mann, A. 2018 Turbofan broadband noise prediction using the lattice Boltzmann method. AIAA J. 56, 609628.CrossRefGoogle Scholar
Catlett, M. R., Anderson, J. M. & Stewart, D. O. 2012 Aeroacoustic response of propellers to sheared turbulent inflows. AIAA Paper 2012-2137.CrossRefGoogle Scholar
Eltaweel, A., Wang, M., Kim, D., Thomas, F. & Kozlov, A. 2014 Numerical investigation of tandem-cylinder noise-reduction using plasma-based flow control. J. Fluid Mech. 756, 422451.CrossRefGoogle Scholar
Ffowcs Williams, J. E. & Hawkings, D. L. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264, 321342.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3, 17601765.CrossRefGoogle Scholar
Gershfeld, J. 2004 Leading-edge noise from thick foils in turbulent flows. J. Acoust. Soc. Am. 116, 14161426.CrossRefGoogle Scholar
Giret, J.-C., Sengissen, A., Moreau, S., Sanjosé, M. & Jouhaud, J.-C. 2015 Noise source analysis of a rod–airfoil configuration using unstructured large-eddy simulation. AIAA J. 53, 10621077.CrossRefGoogle Scholar
Glegg, S. & Devenport, W. 2017 Aeroacoustics of Low Mach Number Flows. Academic Press.Google Scholar
Glegg, S. A. L., Devenport, W. J. & Alexander, W. N. 2015 Broadband rotor noise predictions using a time domain approach. J. Sound Vib. 335, 115124.CrossRefGoogle Scholar
Glegg, S. A. L., Kawashima, E., Lachowski, F., Devenport, W. J. & Alexander, W. N. 2013 Inflow distortion noise in a non-axisymmetric flow. AIAA Paper 2013-2286.CrossRefGoogle Scholar
Glegg, S. A. L., Morton, M. A. & Devenport, W. J. 2012 Rotor inflow noise caused by a boundary layer: theory and examples. AIAA Paper 2012-2120.CrossRefGoogle Scholar
Goldstein, M. E. 1976 Aeroacoustics. McGraw Hill.Google Scholar
Hanson, D. B. 1974 Spectrum of rotor noise caused by atmospheric turbulence. J. Acoust. Soc. Am. 56, 110126.CrossRefGoogle Scholar
Hickling, C., Alexander, W. N., Molinaro, N., Devenport, W. J. & Glegg, S. A. L. 2017 Efficient beamforming techniques for investigating turbulence ingestion noise with an inhomogeneous inflow. AIAA Paper 2017-4179.CrossRefGoogle Scholar
Homicz, G. F. & George, A. R. 1974 Broadband and discrete frequency radiation for subsonic rotors. J. Sound Vib. 36, 151177.CrossRefGoogle Scholar
Howe, M. S. 2001 Edge-source acoustic Green's function for an airfoil of arbitrary chord, with application to trailing edge noise. Q. J. Mech. Appl. Maths 54, 139155.CrossRefGoogle Scholar
Jacob, M. C., Boudet, J., Casalino, D. & Michard, M. 2005 A rod-airfoil experiment as benchmark for broadband noise modeling. Theor. Comput. Fluid Dyn. 19, 171196.CrossRefGoogle Scholar
Lighthill, J. M. 1952 On sound generated aerodynamically. Part I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Majumdar, S. J. & Peake, N. 1998 Noise generation by the interaction between ingested turbulence and a rotating fan. J. Fluid Mech. 359, 181216.CrossRefGoogle Scholar
Mani, R. 1971 Noise due to interaction of inlet turbulence with isolated stators and rotors. J. Sound Vib. 17, 251260.CrossRefGoogle Scholar
Molinaro, N. J., Balantrapu, N. A., Hickling, C., Alexander, W. N., Devenport, W. J. & Glegg, S. A. L. 2017 The ingestion of wake turbulence into an open rotor. AIAA Paper 2017-3868.CrossRefGoogle Scholar
Moreau, S. 2019 a Direct noise computation of low-speed ring fans. Acta Acust. united Ac. 105, 3042.CrossRefGoogle Scholar
Moreau, S. 2019 b Turbomachinery noise predictions: present and future. Acoustics 1, 92116.CrossRefGoogle Scholar
Moreau, S., Roger, M. & Jurdic, V. 2005 Effect of angle of attack and airfoil shape on turbulence-interaction noise. AIAA Paper 2005-2973.CrossRefGoogle Scholar
Murray, H. H., Devenport, W. J., Alexander, W. N., Glegg, S. A. L. & Wisda, D. 2018 Aeroacoustics of a rotor ingesting a planar boundary layer at high thrust. J. Fluid Mech. 850, 212245.CrossRefGoogle Scholar
Norberg, C. 2003 Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 5796.CrossRefGoogle Scholar
Robison, R. A. V. & Peake, N. 2014 Noise generation by turbulence-propeller interaction in asymmetric flow. J. Fluid Mech. 758, 121149.CrossRefGoogle Scholar
Roger, M. & Moreau, S. 2005 Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part 1: theory. J. Sound Vib. 286, 477506.CrossRefGoogle Scholar
Santana, L. D., Christophe, J., Schram, C. & Desmet, W. 2016 A rapid distortion theory modified turbulence spectra for semi-analytical airfoil noise prediction. J. Sound Vib. 383, 349363.CrossRefGoogle Scholar
Sears, W. R. 1941 Some aspects of non-stationary airfoil theory and its practical applications. J. Aeronaut. Sci. 8, 104108.CrossRefGoogle Scholar
Sevik, M. 1974 Sound radiation from a subsonic rotor subjected to turbulence. In Fluid Mechanics, Acoustics and Design of Turbomachinery, Pt. 2, NASA SP-304, pp. 493–512.Google Scholar
Suzuki, T., Spalart, P. R., Shur, M. L., Strelets, M. Kh. & Travin, A. K. 2018 Unsteady simulations of a fan/outlet-guide-vane system: tone–noise computation. AIAA J. 56, 35583569.CrossRefGoogle Scholar
Suzuki, T., Spalart, P. R., Shur, M. L., Strelets, M. Kh. & Travin, A. K. 2019 Unsteady simulations of a fan/outlet-guide-vane system: broadband–noise computation. AIAA J. 57, 51685181.CrossRefGoogle Scholar
Wang, J. 2017 Computation of rotor noise generation in turbulent flow using large-eddy simulation. PhD thesis, University of Notre Dame, Notre Dame, Indiana.Google Scholar
Wang, M., Freund, J. B. & Lele, S. K. 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483512.CrossRefGoogle Scholar
Wang, J., Wang, K. & Wang, M. 2017 Large-eddy simulation study of rotor noise generation in a turbulent wake. AIAA Paper 2017-3533.CrossRefGoogle Scholar
Wisda, D., Alexander, W. N., Devenport, W. J. & Glegg, S. A. L. 2014 Boundary layer ingestion noise and turbulence scale analysis at high and low advance ratios. AIAA Paper 2014-2608.CrossRefGoogle Scholar
Wisda, D., Murray, H., Alexander, W. N., Nelson, M. A., Devenport, W. J. & Glegg, S. A. L. 2015 Flow distortion and noise produced by a thrusting rotor ingesting a planar turbulent boundary layer. AIAA Paper 2015-2981.CrossRefGoogle Scholar
Wojno, J. P., Muller, T. J. & Blake, W. K. 2002 a Turbulence ingestion noise. Part 1: experimental characterization of gird-generated turbulence. AIAA J. 40, 1625.CrossRefGoogle Scholar
Wojno, J. P., Muller, T. J. & Blake, W. K. 2002 b Turbulence ingestion noise. Part 2: rotor aeroacoustic response to grid-generated turbulence. AIAA J. 40, 2632.CrossRefGoogle Scholar
Yang, Q. & Wang, M. 2013 Boundary-layer noise induced by arrays of roughness elements. J. Fluid Mech. 727, 282317.CrossRefGoogle Scholar
You, D., Ham, F. & Moin, P. 2008 Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil. Phys. Fluids 20, 101515.CrossRefGoogle Scholar
Zhong, S., Zhang, X., Peng, B. & Huang, X. 2020 An analytical correction to Amiet's solution of airfoil leading-edge noise in non-uniform mean flows. J. Fluid Mech. 882, A29.CrossRefGoogle Scholar