Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T22:36:34.308Z Has data issue: false hasContentIssue false

Clustering in laboratory and numerical turbulent swirling flows

Published online by Cambridge University Press:  09 September 2022

Sofía Angriman*
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina Instituto de Física de Buenos Aires (IFIBA), CONICET – Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Amélie Ferran
Affiliation:
Université Grenoble Alpes, CNRS, Grenoble-INP, LEGI, F-38000 Grenoble, France Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600, USA
Florencia Zapata
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina Instituto de Física de Buenos Aires (IFIBA), CONICET – Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Pablo J. Cobelli
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina Instituto de Física de Buenos Aires (IFIBA), CONICET – Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Martin Obligado
Affiliation:
Université Grenoble Alpes, CNRS, Grenoble-INP, LEGI, F-38000 Grenoble, France
Pablo D. Mininni
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina Instituto de Física de Buenos Aires (IFIBA), CONICET – Universidad de Buenos Aires, Buenos Aires 1428, Argentina
*
Email address for correspondence: sangriman@df.uba.ar

Abstract

We study the three-dimensional clustering of velocity stagnation points, of nulls of the vorticity and of the Lagrangian acceleration, and of inertial particles in turbulent flows at fixed Reynolds numbers, but under different large-scale flow geometries. To this end, we combine direct numerical simulations of homogeneous and isotropic turbulence and of the Taylor–Green flow, with particle tracking velocimetry in a von Kármán experiment. While flows have different topologies (as nulls cluster differently), particles behave similarly in all cases, indicating that Taylor-scale neutrally buoyant particles cluster as inertial particles.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angriman, S., Cobelli, P.J., Bourgoin, M., Huisman, S.G., Volk, R. & Mininni, P.D. 2021 Broken mirror symmetry of tracer's trajectories in turbulence. Phys. Rev. Lett. 127 (25), 254502.CrossRefGoogle ScholarPubMed
Angriman, S., Mininni, P.D. & Cobelli, P.J. 2020 Velocity and acceleration statistics in particle-laden turbulent swirling flows. Phys. Rev. Fluids 5, 064605.CrossRefGoogle Scholar
Batchelor, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press.CrossRefGoogle Scholar
Bellani, G. & Variano, E.A. 2012 Slip velocity of large neutrally buoyant particles in turbulent flows. New J. Phys. 14 (12), 125009.CrossRefGoogle Scholar
Brennen, C.E. 2005 Fundamentals of Multiphase Flow, 1st edn. Cambridge University Press.CrossRefGoogle Scholar
Buaria, D., Pumir, A., Bodenschatz, E. & Yeung, P.-K. 2019 Extreme velocity gradients in turbulent flows. New J. Phys. 21 (4), 043004.CrossRefGoogle Scholar
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J Fluid Mech. 607, 1324.CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.CrossRefGoogle Scholar
Cartwright, J.H.E., Feudel, U., Károlyi, G., de Moura, A., Piro, O. & Tél, T. 2010 Dynamics of finite-size particles in chaotic fluid flows. In Nonlinear Dynamics and Chaos: Advances And Perspectives (ed. M. Thiel, J. Kurths, M.C. Romano, G. Károlyi & A. Moura), pp. 51–87. Springer.CrossRefGoogle Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.CrossRefGoogle Scholar
Clyne, J., Mininni, P., Norton, A. & Rast, M. 2007 Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9, 301.CrossRefGoogle Scholar
Coleman, S.W. & Vassilicos, J.C. 2009 A unified sweep-stick mechanism to explain particle clustering in two- and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids 21, 113301.CrossRefGoogle Scholar
Davila, J. & Vassilicos, J.C. 2003 Richardson's pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett. 91, 144501.CrossRefGoogle ScholarPubMed
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.CrossRefGoogle Scholar
Ferran, A., Angriman, S., Mininni, P.D. & Obligado, M. 2022 Characterising single and two-phase homogeneous isotropic turbulence with stagnation points. Dynamics 2 (2), 6372.CrossRefGoogle Scholar
Fiabane, L., Volk, R., Pinton, J.-F., Monchaux, R., Cartellier, A. & Bourgoin, M. 2013 Do finite-size neutrally buoyant particles cluster? Phys. Scr. 2013 (T155), 014056.CrossRefGoogle Scholar
Fiabane, L., Zimmermann, R., Volk, R., Pinton, J.-F. & Bourgoin, M. 2012 Clustering of finite-size particles in turbulence. Phys. Rev. E 86, 035301.CrossRefGoogle ScholarPubMed
Goto, S. & Vassilicos, J.C. 2006 Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18 (11), 115103.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 054503.CrossRefGoogle ScholarPubMed
Goto, S. & Vassilicos, J.C. 2009 The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys. Fluids 21, 035104.CrossRefGoogle Scholar
Green, A.E. & Taylor, G.I. 1937 Mechanism of the production of small eddies from larger ones. Proc. R. Soc. A 158 (895), 499521.Google Scholar
Haynes, A.L. & Parnell, C.E. 2007 A trilinear method for finding null points in a three-dimensional vector space. Phys. Plasmas 14, 082107.CrossRefGoogle Scholar
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.CrossRefGoogle Scholar
Huck, P.D., Machicoane, N. & Volk, R. 2017 Production and dissipation of turbulent fluctuations close to a stagnation point. Phys. Rev. Fluids 2 (8), 084601.CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.CrossRefGoogle Scholar
Kreuzahler, S., Schulz, D., Homann, H., Ponty, Y. & Grauer, R. 2014 Numerical study of impeller-driven von Kármán flows via a volume penalization method. New J. Phys. 16 (10), 103001.CrossRefGoogle Scholar
Machicoane, N., López-Caballero, M., Fiabane, L., Pinton, J.-F., Bourgoin, M., Burguete, J. & Volk, R. 2016 Stochastic dynamics of particles trapped in turbulent flows. Phys. Rev. E 93 (2), 023118.CrossRefGoogle ScholarPubMed
Machicoane, N., Zimmermann, R., Fiabane, L., Bourgoin, M., Pinton, J.-F. & Volk, R. 2014 Large sphere motion in a nonhomogeneous turbulent flow. New J. Phys. 16 (1), 013053.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Mininni, P.D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37 (6–7), 316326.CrossRefGoogle Scholar
Monchaux, R. 2012 Measuring concentration with Voronoï diagrams: the study of possible biases. New J. Phys. 14 (9), 095013.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Mora, D.O., Bourgoin, M., Mininni, P.D. & Obligado, M. 2021 Clustering of vector nulls in homogeneous isotropic turbulence. Phys. Rev. Fluids 6 (2), 024609.CrossRefGoogle Scholar
Mordant, N., Delour, J., Léveque, E., Arnéodo, A. & Pinton, J.-F. 2002 Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89 (25), 254502.CrossRefGoogle ScholarPubMed
Mordant, N., Lévêque, E. & Pinton, J.-F. 2004 Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116.CrossRefGoogle Scholar
Morrison, F.A. 2013 Data Correlation for Drag Coefficient for Sphere, vol. 49931. Department of Chemical Engineering, Michigan Technological University.Google Scholar
Obligado, M., Teitelbaum, T., Cartellier, A., Mininni, P.D. & Bourgoin, M. 2014 Preferential concentration of heavy particles in turbulence. J. Turbul. 15 (5), 293310.CrossRefGoogle Scholar
Obligado, M., Volk, R., Mordant, N. & Bourgoin, M. 2019 Preferential concentration of finite solid particles in a swirling von Kármán flow of water. In Turbulent Cascades II (ed. M. Gorokhovski & F.S. Godeferd), pp. 207–216. Springer.CrossRefGoogle Scholar
Oka, S. & Goto, S. 2021 Generalized sweep-stick mechanism of inertial-particle clustering in turbulence. Phys. Rev. Fluids 6, 044605.CrossRefGoogle Scholar
Poncet, S., Schiestel, R. & Monchaux, R. 2008 Turbulence modeling of the von Kármán flow: viscous and inertial stirrings. Intl J. Heat Fluid Flow 29 (1), 6274.CrossRefGoogle Scholar
Qureshi, N.M, Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.CrossRefGoogle ScholarPubMed
Ravelet, F., Marié, L., Chiffaudel, A. & Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93 (16), 164501.CrossRefGoogle Scholar
Reartes, C. & Mininni, P.D. 2021 Settling and clustering of particles of moderate mass density in turbulence. Phys. Rev. Fluids 6, 114304.CrossRefGoogle Scholar
Rosenberg, D., Mininni, P.D., Reddy, R. & Pouquet, A. 2020 GPU parallelization of a hybrid pseudospectral geophysical turbulence framework using CUDA. Atmosphere 11 (2), 178.CrossRefGoogle Scholar
Schmitt, F.G. & Seuront, L. 2008 Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J. Mar. Syst. 70 (3–4), 263272.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2002 Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids 14, 370381.CrossRefGoogle Scholar
Smith, J.M., Hopcraft, K.I. & Jakeman, E. 2008 Fluctuations in the zeros of differentiable Gaussian processes. Phys. Rev. E 77 (3), 031112.CrossRefGoogle ScholarPubMed
Tagawa, Y., Mercado, J., Prakash, V.N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoïanalysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. A 164 (919), 476490.Google Scholar
Uhlmann, M. 2020 Voronoï tessellation analysis of sets of randomly placed finite-size spheres. Physica A 555, 124618.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F. & Toschi, F. 2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237 (14–17), 20842089.CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows. Physica D 237 (14–17), 20952100.CrossRefGoogle Scholar
Yoshimoto, H. & Goto, S. 2007 Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech. 577, 275286.CrossRefGoogle Scholar