Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T11:25:51.415Z Has data issue: false hasContentIssue false

Cavity formation by the impact of Leidenfrost spheres

Published online by Cambridge University Press:  09 May 2012

J. O. Marston*
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
I. U. Vakarelski
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia Clean Combustion Research Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
S. T. Thoroddsen
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia Clean Combustion Research Centre, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
*
Email address for correspondence: jeremy.marston@kaust.edu.sa

Abstract

We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.CrossRefGoogle Scholar
2. Aristoff, J. M., Truscott, T., Techet, A. H. & Bush, J. W. M. 2010 The water entry of decelerating spheres. Phys. Fluids 22, 032102.CrossRefGoogle Scholar
3. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge Universtiy Press.Google Scholar
4. Benkreira, H. & Khan, M. I. 2008 Air entrainment in dip coating under reduced air pressures. Chem. Engng Sci. 63 (2), 448459.CrossRefGoogle Scholar
5. Bergmann, R., van der Meer, D., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.CrossRefGoogle Scholar
6. Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quere, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.CrossRefGoogle Scholar
7. Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.CrossRefGoogle Scholar
8. Brennen, C. 1970 Cavity surface wave patterns and general appearance. J. Fluid Mech. 44 (1), 3349.CrossRefGoogle Scholar
9. Burley, R. & Kennedy, S. B. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 31, 901911.CrossRefGoogle Scholar
10. Do-Quang, M. & Amberg, G. 2009 The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence of wetting. Phys. Fluids 21, 022102.CrossRefGoogle Scholar
11. Duclaux, V., Caille, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Transient cavities. J. Fluid Mech. 591, 119.CrossRefGoogle Scholar
12. Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.CrossRefGoogle Scholar
13. Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Versluis, M., van der Meer, D. & Lohse, D. 2010 Collapse of nonaxisymmetric cavities. Phys. Fluids 22, 091104.CrossRefGoogle Scholar
14. Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Versluis, M., van der Meer, D. & Lohse, D. 2011 Non-axisymmetric impact creates pineapple-shaped cavity. Phys. Fluids 23, 091106.CrossRefGoogle Scholar
15. Gekle, S., van der Bos, A., Bergmann, R., van der Meer, D. & Lohse, D. 2008 Noncontinuous Froude number scaling for the closure depth of a cylindrical cavity. Phys. Rev. Lett. 100, 084502.CrossRefGoogle ScholarPubMed
16. Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.CrossRefGoogle Scholar
17. Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.CrossRefGoogle ScholarPubMed
18. Gekle, S., Peters, I. R., Gordillo, J. M., van der Meer, D. & Lohse, D. 2010 Supersonic air flow due to solid–liquid impact. Phys. Rev. Lett. 104, 024501.CrossRefGoogle ScholarPubMed
19. Glasheen, J. W. & McMahon, T. A. 1996 Vertical water entry of disks at low Froude numbers. Phys. Fluids 8, 20782083.CrossRefGoogle Scholar
20. Gordillo, J. M. & Gekle, S. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331346.CrossRefGoogle Scholar
21. Grumstrup, T., Keller, J. B. & Belmonte, A. 2007 Cavity ripples observed during the impact of solid objects into liquids. Phys. Rev. Lett. 99, 114502.CrossRefGoogle ScholarPubMed
22. Lee, M., Longoria, R. G. & Wilson, D. E. 1997 Cavity dynamics in high-speed water entry. Phys. Fluids 9, 540550.CrossRefGoogle Scholar
23. Leidenfrost, J. G. 1756 A Tract About Some Qualities of Common Water. Reprinted (transl. C. Wares) 1966 On the fixation of water in diverse fire. Intl J. Heat Mass Transfer 9, 1153–1166.Google Scholar
24. Li, L., Li, H. & Chen, T. 2008 Experimental investigation on the moving characteristics of molten metal droplets impacting coolant. Exp. Therm. Fluid Sci. 32, 962972.CrossRefGoogle Scholar
25. Liu, G. & Craig, S. J. 2010 Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. Faraday Discuss. 146, 141151.CrossRefGoogle Scholar
26. Marston, J. O. & Thoroddsen, S. T. 2008 Apex jets from impacting drops. J. Fluid Mech. 614, 293302.CrossRefGoogle Scholar
27. Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2011 Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680, 660670.CrossRefGoogle Scholar
28. May, A. 1951 Effect of surface condition of a sphere on its water-entry cavity. J. Appl. Phys. 22, 12191222.CrossRefGoogle Scholar
29. May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 22, 13621372.CrossRefGoogle Scholar
30. McMillen, J. H. 1945 Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68, 198209.CrossRefGoogle Scholar
31. Meyer, L. 1999 QUEOS, an experimental investigation of the premixing phase with hot spheres. Nucl. Engng Des. 189, 191204.CrossRefGoogle Scholar
32. Richardson, E. G. 1948 The impact of a solid on a liquid surface. Proc. Phys. Soc. 61, 352367.CrossRefGoogle Scholar
33. Royer, J. R., Corwin, E. I., Flior, A., Cordero, M.-L., Rivers, M. L., Eng, P. J. & Jaeger, H. M. 2005 Formation of granular jets observed by high-speed X-ray radiography. Nat. Phys. 1, 164167.CrossRefGoogle Scholar
34. Shirtcliffe, N. J., McHale, G., Atherton, S. & Newton, M. I. 2010 An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161, 124138.CrossRefGoogle ScholarPubMed
35. Thoroddsen, S. T. & Shen, A. Q. 2001 Granular jets. Phys. Fluids 13, 46.CrossRefGoogle Scholar
36. Thoroddsen, S. T., Takehara, K., Etoh, T. G. & Ohl, C. D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.CrossRefGoogle Scholar
37. Truscott, T. T. & Techet, A. H. 2009a Water entry of spinning spheres. J. Fluid Mech. 625, 135165.CrossRefGoogle Scholar
38. Truscott, T. T. & Techet, A. H. 2009b A spin on cavity formation during water entry of hydrophobic and hydrophilic sphere. Phys. Fluids 21, 121703.CrossRefGoogle Scholar
39. Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2011 Drag reduction by Leidenfrost vapour layers. Phys. Rev. Lett. 106, 214501.CrossRefGoogle ScholarPubMed
40. Worthington, A. M. 1908 Longmans Green.Google Scholar
41. Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137148.Google Scholar
42. Worthington, A. M. & Cole, R. S. 1900 Impact with a liquid surface, studied by the aid of instantaneous photography: paper 2. Phil. Trans. R. Soc. Lond. A 194, 175199.Google Scholar
43. Yan, H., Liu, Y., Kominiarczuk, J. & Yue, D. K. 2009 Cavity dynamics in water entry at low Froude numbers. J. Fluid Mech. 641, 441461.CrossRefGoogle Scholar
44. Zvirin, Y., Hewitt, G. F. & Kenning, D. B. R. 1990 Boiling on free-falling spheres: drag and heat transfer coefficients. Expt. Heat Transfer 3, 185214.CrossRefGoogle Scholar

Marston et al. supplementary movie

Movie 1. Impact of a “Leidenfrost sphere” with initial temperature 240 C onto PP1 (perfluorohexane). Sphere radius is 7.5 mm and the impact speed is 1 m/s. Original frame rate was 12,500 fps.

Download Marston et al. supplementary movie(Video)
Video 1.9 MB

Marston et al. supplementary movie

Movie 2. Entry stage of different temperature spheres onto PP1 (perfluorohexane). Initial temperatures are 22, 70, 100 and 180 C (left to right). Sphere radii are all 7.5 mm and the impact speed is 1.27 m/s. Original frame rate was 12,500 fps.

Download Marston et al. supplementary movie(Video)
Video 477.2 KB

Marston et al. supplementary movie

Movie 3. Cavity instability after pinch-off following the impact of a Leidenfrost sphere (200 C) onto PP1 (perfluorohexane). Sphere radius is 7.5 mm and the impact speed is 1.27 m/s. Original frame rate was 12,500 fps.

Download Marston et al. supplementary movie(Video)
Video 469.8 KB