Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T01:42:00.192Z Has data issue: false hasContentIssue false

The catalytic effect of near-inertial waves on $\beta$-plane zonal jets

Published online by Cambridge University Press:  04 May 2023

Lin-Fan Zhang
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, State Key Laboratory for Turbulence and Complex Systems, Beijing 100871, PR China
Jin-Han Xie*
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, State Key Laboratory for Turbulence and Complex Systems, Beijing 100871, PR China Joint Laboratory of Marine Hydrodynamics and Ocean Engineering, Laoshan Laboratory, Shandong 266237, PR China
*
Email addresses for correspondence: jinhanxie@pku.edu.cn

Abstract

Zonal jets and inertia–gravity waves are ubiquitous on planets such as Earth, Jupiter and Saturn. Motivated by the modification of energy flux of balanced flow by inertia–gravity waves, this paper studies the impact of near-inertial waves (NIWs) on zonal jets on a $\beta$-plane. Using a two-dimensional quasi-geostrophic and NIW coupled system on a $\beta$-plane (Xie & Vanneste, J. Fluid Mech., vol. 774, 2015, pp. 143–169), we find NIWs catalytically impact several features of zonal jets. The NIWs inhibit jet formation due to the waves’ catalytic induction of downscale mean energy flux. As the strength of NIWs increases, a critical point exists beyond which zonal jets are annihilated. The jet spacing is captured by the Rhines scale $L\sim \sqrt {U/\beta }$ with $U$ estimated from the upscale energy flux induced by the mean flow alone, which again shows that the NIWs’ impact is catalytic. Also, the temporal asymmetry of NIWs leads to the spatial asymmetry of jet dynamics. The jet profiles are asymmetric with a stronger shear on the left flank. And similar to the left turning of vortex dipole under the impact of NIWs, the NIW-modified jets migrate poleward. The NIWs also show a catalytic role in jet migration: the net momentum flux directly induced by NIWs is of secondary importance in the zonal mean momentum dynamics and impedes jet migration, while the advective effect of NIW-modified mean flow dominates the jet migration velocity.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathey, R., Marshall, J. & Ferreira, D. 2011 The dependence of southern ocean meridional overturning on wind stress. J. Phys. Oceanogr. 41 (12), 22612278.CrossRefGoogle Scholar
Andrews, D.G. & Mcintyre, M.E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89 (4), 609646.CrossRefGoogle Scholar
Ashkenazy, Y. & Tziperman, E. 2016 Variability, instabilities, and eddies in a snowball ocean. J. Clim. 29 (2), 869888.CrossRefGoogle Scholar
Asselin, O., Thomas, L.N., Young, W.R. & Rainville, L. 2020 Refraction and straining of near-inertial waves by barotropic eddies. J. Phys. Oceanogr. 50, 34393454.CrossRefGoogle Scholar
Asselin, O. & Young, W.R. 2019 An improved model of near-inertial wave dynamics. J. Fluid Mech. 876, 428448.CrossRefGoogle Scholar
Asselin, O. & Young, W.R. 2020 Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr. 50 (6), 16991716.CrossRefGoogle Scholar
Barkan, R., Srinivasan, K., Yang, L., McWilliams, J.C., Gula, J. & Vic, C. 2021 Oceanic mesoscale eddy depletion catalyzed by internal waves. Geophys. Res. Lett. 48, e2021GL094376.CrossRefGoogle Scholar
Barkan, R., Winters, K.B. & McWilliams, J.C. 2017 Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr. 47 (1), 181198.CrossRefGoogle Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.CrossRefGoogle Scholar
Bouchet, F., Marston, J.B. & Tangarife, T. 2018 Fluctuations and large deviations of reynolds stresses in zonal jet dynamics. Phys. Fluids 30 (1), 015110.CrossRefGoogle Scholar
Bouchet, F., Rolland, J. & Simonnet, E. 2019 Rare event algorithm links transitions in turbulent flows with activated nucleations. Phys. Rev. Lett. 122 (7), 074502.CrossRefGoogle ScholarPubMed
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227295.CrossRefGoogle Scholar
Bühler, O. 2009 Waves and Mean Flows. Cambridge University Press.CrossRefGoogle Scholar
Chan, C.J., Plumb, R.A. & Cerovecki, I. 2007 Annular modes in a multiple migrating zonal jet regime. J. Atmos. Sci. 64 (11), 40534068.CrossRefGoogle Scholar
Chekhlov, A., Orszag, S.A., Sukoriansky, S., Galperin, B. & Staroselsky, I. 1996 The effect of small-scale forcing on large-scale structures in two-dimensional flows. Phys. D 98 (2-4), 321334.CrossRefGoogle Scholar
Chemke, R. & Kaspi, Y. 2015 a The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci. 72 (10), 38913907.CrossRefGoogle Scholar
Chemke, R. & Kaspi, Y. 2015 b Poleward migration of eddy-driven jets: poleward migration of eddy-driven jets. J. Adv. Model. Earth Syst. 7 (3), 14571471.CrossRefGoogle Scholar
Cope, L. 2020 The dynamics of geophysical and astrophysical turbulence. PhD Thesis, University of Cambridge.Google Scholar
Cox, S.M. & Matthews, P.C. 2002 Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2), 430455.CrossRefGoogle Scholar
Danilov, S.D. & Gurarie, D 2000 Quasi-two-dimensional turbulence. Phys. Uspekhi 43 (9), 863900.CrossRefGoogle Scholar
Danilov, S. & Gurarie, D. 2004 Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids 16 (7), 2592–2603.CrossRefGoogle Scholar
Danioux, E., Vanneste, J. & Bühler, O. 2015 On the concentration of near-inertial waves in anticyclones. J. Fluid Mech. 773, R2.CrossRefGoogle Scholar
Danioux, E., Vanneste, J., Klein, P. & Sasaki, H. 2012 Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech. 699, 153173.CrossRefGoogle Scholar
Dickey, J.O., Marcus, S.L. & Hide, R. 1992 Global propagation of interannual fluctuations in atmospheric angular momentum. Nature 357 (6378), 484488.CrossRefGoogle Scholar
Dritschel, D.G. & McIntyre, M.E. 2008 Multiple jets as PV staircases: the phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65 (3), 855874.CrossRefGoogle Scholar
Dunkerton, T.J. & Scott, R.K. 2008 A barotropic model of the angular momentum–conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65 (4), 11051136.CrossRefGoogle Scholar
Elipot, S., Lumpkin, R. & Prieto, G. 2010 Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res. 115, C09010.Google Scholar
Farrell, B.F. & Ioannou, P.J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60 (17), 21012118.2.0.CO;2>CrossRefGoogle Scholar
Feldstein, S.B. 1998 An observational study of the intraseasonal poleward propagation of zonal mean flow anomalies. J. Atmos. Sci. 55 (15), 25162529.2.0.CO;2>CrossRefGoogle Scholar
Ferrari, R. & Wunsch, C. 2009 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41 (1), 253282.CrossRefGoogle Scholar
Fu, L.-L. 1981 Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys. 19 (1), 141170.CrossRefGoogle Scholar
Galperin, B. & Read, P.L. (Eds.) 2019 Zonal Jets: Phenomenology, Genesis, and Physics, 1st edn. Cambridge University Press.CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S. & Dikovskaya, N. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a $\beta$-effect. Ocean Dyn. 60 (2), 427441.CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Yamazaki, Y.H. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a $\beta$-effect. Nonlinear Process. Geophys. 13 (1), 8398.CrossRefGoogle Scholar
García-Melendo, E. 2001 A study of the stability of Jovian zonal winds from HST images: 1995–2000. Icarus 152 (2), 316330.CrossRefGoogle Scholar
Gertz, A. & Straub, D.N. 2009 Near-inertial oscillations and the damping of midlatitude gyres: a modeling study. J. Phys. Oceanogr. 39 (9), 23382350.CrossRefGoogle Scholar
Grisouard, N. & Thomas, L.N. 2016 Energy exchanges between density fronts and near-inertial waves reflecting off the ocean surface. J. Phys. Oceanogr. 46 (2), 501516.CrossRefGoogle Scholar
Hernandez-Duenas, G., Smith, L.M. & Stechmann, S.N. 2014 Investigation of Boussinesq dynamics using intermediate models based on wave–vortical interactions. J. Fluid Mech. 747, 247287.CrossRefGoogle Scholar
James, I.N. & Dodd, J.P. 1996 A mechanism for the low-frequency variability of the mid-latitude troposphere. Q. J. R. Meteorol. Soc. 122 (533), 11971210.CrossRefGoogle Scholar
Joyce, T.M., Toole, J.M., Klein, P. & Thomas, L.N. 2013 A near-inertial mode observed within a gulf stream warm-core ring. J. Geophys. Res. Oceans 118 (4), 17971806.CrossRefGoogle Scholar
Kafiabad, H.A., Vanneste, J. & Young, W.R. 2021 Interaction of near-inertial waves with an anticyclonic vortex. J. Phys. Oceanogr. 51, 20352048.Google Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.CrossRefGoogle Scholar
Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15 (5), 544565.2.0.CO;2>CrossRefGoogle Scholar
Kunze, E., Schmitt, R.W. & Toole, J.M. 1995 The energy balance in a warm-core ring's near-inertial critical layer. J. Phys. Oceanogr. 25 (5), 942957.2.0.CO;2>CrossRefGoogle Scholar
Lee, D.-K. & Niiler, P.P. 1998 The inertial chimney: the near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res.: Oceans 103 (C4), 75797591.CrossRefGoogle Scholar
Lemasquerier, D., Favier, B. & Le Bars, M. 2021 Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance. J. Fluid Mech. 910, A18.CrossRefGoogle Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Maltrud, M.E. & Vallis, G.K. 1991 Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228, 321342.Google Scholar
Manfroi, A.J. & Young, W.R. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56 (5), 784800.2.0.CO;2>CrossRefGoogle Scholar
Marcus, P.S. & Lee, C. 1998 A model for eastward and westward jets in laboratory experiments and planetary atmospheres. Phys. Fluids 10 (6), 14741489.CrossRefGoogle Scholar
Marston, J.B. & Tobias, S.M. 2023 Recent developments in theories of inhomogeneous and anisotropic turbulence. Annu. Rev. Fluid Mech. 55 (1), 351375.CrossRefGoogle Scholar
Nagai, T., Tandon, A., Kunze, E. & Mahadevan, A. 2015 Spontaneous generation of near-inertial waves by the kuroshio front. J. Phys. Oceanogr. 45 (9), 23812406.CrossRefGoogle Scholar
Okuno, A. & Masuda, A. 2003 Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: suppression of the Rhines effect. Phys. Fluids 15 (1), 5665.CrossRefGoogle Scholar
Plougonven, R. & Snyder, C. 2007 Inertia–gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles. J. Atmos. Sci. 64, 25022520.CrossRefGoogle Scholar
Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (3), 417443.CrossRefGoogle Scholar
Rhines, P.B. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11, 401441.CrossRefGoogle Scholar
Rhines, P.B. 1994 Jets. Chaos 4 (2), 313339.CrossRefGoogle ScholarPubMed
Riehl, H., Yeh, T.C. & La Seur, N.E. 1950 A study of variations of the general circulation. J. Meteorol. 7 (3), 181194.2.0.CO;2>CrossRefGoogle Scholar
Rocha, C.B., Wagner, G.L. & Young, W.R. 2018 Stimulated generation: extraction of energy from balanced flow by near-inertial waves. J. Fluid Mech. 847, 417451.CrossRefGoogle Scholar
Rolland, J. & Simonnet, E. 2015 Statistical behaviour of adaptive multilevel splitting algorithms in simple models. J. Comput. Phys. 283, 541558.CrossRefGoogle Scholar
Salmon, R. 2013 An alternative view of generalized Lagrangian mean theory. J. Fluid Mech. 719, 165182.CrossRefGoogle Scholar
Sanchez-Lavega, A. & Rojas, J.F. 2000 Saturn's zonal winds at cloud level. Icarus 147 (2), 405420.CrossRefGoogle Scholar
Sánchez-Lavega, A., et al. 2008 Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature 451 (7177), 437440.CrossRefGoogle Scholar
Scott, R.K. & Dritschel, D.G. 2012 The structure of zonal jets in geostrophic turbulence. J. Fluid Mech. 711, 576598.CrossRefGoogle Scholar
Shakespeare, C.J. & McC. Hogg, A. 2018 The life cycle of spontaneously generated internal waves. J. Phys. Oceanogr. 48 (2), 343359.CrossRefGoogle Scholar
Smith, K.S. 2004 A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci. 61 (12), 14201433.2.0.CO;2>CrossRefGoogle Scholar
Smith, L.M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.CrossRefGoogle Scholar
Soward, A.M. & Roberts, P.H. 2010 The hybrid Euler–Lagrange procedure using an extension of Moffatt's method. J. Fluid Mech. 661, 4572.CrossRefGoogle Scholar
Srinivasan, K. & Young, W.R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.CrossRefGoogle Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the rhines scale. J. Atmos. Sci. 64 (9), 33123327.CrossRefGoogle Scholar
Taylor, S. & Straub, D. 2016 Forced near-inertial motion and dissipation of ow-frequency kinetic energy in a wind-driven channel flow. J. Phys. Oceanogr. 46 (1), 7993.CrossRefGoogle Scholar
Thomas, L.N. 2012 On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech. 711, 620640.CrossRefGoogle Scholar
Thomas, J. & Arun, S. 2020 Near-inertial waves and geostrophic turbulence. Phys. Rev. Fluid 5 (1), 014801.CrossRefGoogle Scholar
Thomas, L.N., Rainville, L., Asselin, O., Young, W.R., Girton, J., Whalen, C.B., Centurioni, L. & Hormann, V. 2020 Direct observations of near-inertial wave $\zeta$ -refraction in a dipole vortex. Geophys. Res. Lett. 47, e2020GL090375.CrossRefGoogle Scholar
Uppala, S.M., et al. 2005 The ERA-40 re-analysis. J. Atmos. Sci. 131 (612), 29613012.Google Scholar
Vallis, G.K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Vallis, G.K. & Maltrud, M. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 13461362.2.0.CO;2>CrossRefGoogle Scholar
Vanneste, J. 2008 Exponential smallness of inertia–gravity wave generation at small Rossby number. J. Atmos. Sci. 65, 16221637.CrossRefGoogle Scholar
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45 (1), 147172.CrossRefGoogle Scholar
Vasavada, A.R. & Showman, A.P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68 (8), 19351996.CrossRefGoogle Scholar
Wagner, G.L. & Young, W.R. 2016 A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech. 802, 806837.CrossRefGoogle Scholar
Whitt, D.B. & Thomas, L.N. 2015 Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr. 45, 181208.CrossRefGoogle Scholar
Williams, G.P. 1978 Planetary circulations: 1. Barotropic representation of jovian and terrestrial turbulence. J. Atmos. Sci. 35 (8), 13991426.2.0.CO;2>CrossRefGoogle Scholar
Williams, G.P. 2003 Jovian dynamics. Part III: multiple, migrating, and equatorial jets. J. Atmos. Sci. 60 (10), 12701296.2.0.CO;2>CrossRefGoogle Scholar
Woillez, E. & Bouchet, F. 2019 Barotropic theory for the velocity profile of Jupiter's turbulent jets: an example for an exact turbulent closure. J. Fluid Mech. 860, 577607.CrossRefGoogle Scholar
Xie, J.-H. 2020 Downscale transfer of quasigeostrophic energy catalyzed by near-inertial waves. J. Fluid Mech. 904, A40.CrossRefGoogle Scholar
Xie, J.-H. & Vanneste, J. 2015 A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech. 774, 143169.CrossRefGoogle Scholar
Young, W. & Ben Jelloul, M. 1997 Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55, 735766.CrossRefGoogle Scholar
Zeitlin, V. 2008 Decoupling of balanced and unbalanced motions and inertia–gravity wave emission: small versus large Rossby numbers. J. Atmos. Sci. 65, 3528–354.CrossRefGoogle Scholar