Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T11:48:05.408Z Has data issue: false hasContentIssue false

Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section

Published online by Cambridge University Press:  12 February 2009

SRINATH S. CHAKRAVARTHY
Affiliation:
Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
WILSON K. S. CHIU*
Affiliation:
Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
*
Email address for correspondence: wchiu@engr.uconn.edu

Abstract

We consider the evolution of slender viscous fibres with cross-section containing holes with application to fabrication of microstructured optical fibres. The fibre evolution is driven by either prescribing velocity or a force at the ends of the fibre, and the free surfaces evolve under the influence of surface tension, internal pressurization, inertia and gravity. We use the fact that ratio of the typical fibre radius to the typical fibre length is small to perform an asymptotic analysis of the full three-dimensional Navier–Stokes equations similar to earlier work on non-axisymmetric (but simply connected) fibres. A numerical solution to the multiply connected steady-state drawing problem is formulated based on the solution the Sherman–Lauricella equation. The effects of different drawing and material parameters like surface tension, gravity, inertia and internal pressurization on the drawing are examined, and extension of the method to non-isothermal evolution is presented.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birks, T. A., Knight, J. C. & Russell, P. St. J. 1997 Endlessly single-mode photonic crystal fibre. Opt. Lett. 22, 961963.CrossRefGoogle Scholar
Birks, T. A., Roberts, P. J., Russell, P. J., Atkin, D. M. & Shepherd, T. J. 1995 Full 2-d photonic band gaps in silica/air structures. Electron. Lett. 31, 19411942.CrossRefGoogle Scholar
Bise, R. T., Trevor, D. J., Monberg, E. & DiMarcello, F. 2002 Impact of preform fabrication and fiber draw on the optical properties of microstructured fibers. In Proc. of the 51st IWCS, pp. 339–343.Google Scholar
Cheng, X. & Jaluria, Y. 2002 Effect of draw furnace geometry on high-speed optical fiber manufacturing. Num. Heat Trans. A Fundam. 41, 757781.CrossRefGoogle Scholar
Choudhury, S. Roy & Jaluria, T. 1998 Practical aspects of drawing an optical fiber. J. Mater. Res. 13 483493.CrossRefGoogle Scholar
Crowdy, D. 2002 Exact solutions for the visocus sintering of multiply-connected fluid domains. J. Engng Math. 42, 225242.CrossRefGoogle Scholar
Cummings, L. J. & Howell, P. D. 1999 On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361389.CrossRefGoogle Scholar
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1992 A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323338.CrossRefGoogle Scholar
Dewynne, J., Ockendon, J. R. & Wilmott, P. 1994 On a mathematical-model for fiber tapering. Q. J. Mech. Appl. Math. 47, 541555.CrossRefGoogle Scholar
Fitt, A. D., Furusawa, K., Monro, T. M. & Please, C. P. 2001 Modeling the fabrication of hollow fibers: Capillary drawing. J. Lightwave Technol. 19 (12), 19241931.CrossRefGoogle Scholar
Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P. & Richardson, D. J. 2002 The mathematical modelling of capillary drawing for holey fiber manufacture. J. Engng Math. 43, 201227.CrossRefGoogle Scholar
Gospodinov, P. & Yarin, A. L. 1997 Draw resonance of optical microcapillaries in non-isothermal drawing. Int. J. Multiphase Flow 23 (5), 967976.CrossRefGoogle Scholar
Greengard, L., Kropinski, M. C. & Mayo, A. 1996 Integral equation methods for stokes flow and isotropic elasticity in the plane. J. Comput. Phys. 125 (2), 403414.CrossRefGoogle Scholar
Hopper, R. W. 1990 Plane Stokes flow driven by capillarity on a free surface. J. Fluid Mech. 213, 349375.CrossRefGoogle Scholar
Howell, P. D. & Siegel, M. 2004 The evolution of a slender non-axisymmetric drop in an extensional flow. J. Fluid Mech. 521, 155180.CrossRefGoogle Scholar
Lu, J.-K. 1995 Complex Variable Methods in Plane Elasticity. World Scientific.CrossRefGoogle Scholar
Matovich, M. A. & Pearson, J. R. A. 1969 Spinning a molten threadline – steady-state isothermal flows. Ind. Engng Chem. Fundam. 8, 512520.CrossRefGoogle Scholar
Mikhailov, V. N. 1979 Plane problem of the theory of elasticity in multiply-connected domains with cyclic and mirror symmetry. J. Appl. Math. Mech. (English translation of Prikladnaya Matematika i Mekhanika) 43 (2), 401404.Google Scholar
Muskhelishvili, N. I. 1963 a Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Groningen, P. Noordhoff.Google Scholar
Muskhelishvili, N. I. 1963 b Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending. Groningen, P. Noordhoff translation of the 4th corrected and augmented edition, Moscow, 1954.Google Scholar
Paek, U. C. & Bunk, R. B. 1978 Physical behavior of the neck-down region during furnace drawing. J. Appl. Phys. 49, 44174422.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2002 Numerical Recipes in C. Cambridge University Press.Google Scholar
Richardson, S. 1992 Two-dimensional slow viscous flows with time-dependent free boundaries driven by surface tension. Eur. J. Appl. Math. 3, 193207.CrossRefGoogle Scholar
Richardson, S. 2000 Plane stokes flows with time-dependent free boundaries in which the fluid occupies a doubly-connected region. Eur. J. Appl. Math. 11, 249269.CrossRefGoogle Scholar
Russell, P. 2003 Photonic crystal fibers. Science 299, 358362.CrossRefGoogle ScholarPubMed
Sarboh, S. D., Milinkovic, S. A. & Debeljkovic, D. L. J. 1998 Mathematical model of the glass capillary tube drawing process. Glass Technol. 39, 5367.Google Scholar
Schultz, W. W. & Davis, S. H. 1982 One-dimensional liquid fibers. J. Rheol. 24 (4), 331345.CrossRefGoogle Scholar
Shah, Y. Y. & Pearson, J. R. A. 1972 On the stabiloty of nonisothermal fiber spinning. Ind. Engng Chem. Fundam. 11, 145149.CrossRefGoogle Scholar
Tanveer, S. & Crowdy, D. G. 1998 A theory of exact solutions for plane viscous blobs. J. Nonlinear Sci. 8, 261279.Google Scholar
Tanveer, S. & Vasconcelos, G. L. 1994 Bubble breakup in two-dimensional Stokes flow. Phys. Rev. Lett. 73 (21), 28452848.CrossRefGoogle ScholarPubMed
Tanveer, S. & Vasconcelos, G. L. 1995 Time-evolving bubbles in two-dimensional Stokes flow. J. Fluid Mech. 301, 325344.CrossRefGoogle Scholar
Thompson, J. F. 1985 Nunmerical grid generation: Foundations and Applications. Elsevier Science Publishing Co., Inc.Google Scholar
Vorst, G. A. L. van de 1993 Integral method for a two-dimensional stokes flow with shrinking holes applied to viscous sintering. J. Fluid Mech. 257, 667689.CrossRefGoogle Scholar
Wylie, J. J., Huang, H. & Miura, R. M. 2007 Thermal instability in drawing viscous threads. J. Fluid Mech. 570, 116.CrossRefGoogle Scholar
Xue, S. C., Large, M. C. J., Barton, G. W., Tanner, R. I., Poladian, L. & Lwin, R. 2006 Role of material properties and drawing conditions in the fabrication of microstructured optical fibers. J. Lightwave Technol. 24 (2), 853860.CrossRefGoogle Scholar
Xue, S. C., Tanner, R. I., Barton, G. W., Lwin, R., Large, M. C. J. & Poladian, L. 2005 a Fabrication of microstructured optical fibers – part II: Numerical modeling of steady-state draw process. J. Lightwave Technol. 23 (7), 22552266.CrossRefGoogle Scholar
Xue, S. C., Tanner, R. I., Barton, G. W., Lwin, R., Large, M. C. J. & Poladian, L. 2005 b Fabrication of microstructured optical fibers – part I: Problem formulation and numerical modeling of transient draw process. J. Lightwave Technol. 23 (7), 22452254.CrossRefGoogle Scholar
Yarin, A. L., Gospodinov, P. & Roussinov, V. I. 1994 Stability loss and sensitivity in hollow fiber drawing. Phys. Fluids 6, 14541463.CrossRefGoogle Scholar
Yin, Z. & Jaluria, Y. 2000 Neck down and thermally induced defects in high speed optical fiber drawing. J. Heat Transf. 122, 351362.CrossRefGoogle Scholar