Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T15:06:37.229Z Has data issue: false hasContentIssue false

Analysis of the Kolmogorov equation for filtered wall-turbulent flows

Published online by Cambridge University Press:  04 April 2011

A. CIMARELLI
Affiliation:
DIEM, Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
E. DE ANGELIS*
Affiliation:
DIEM, Università di Bologna, Via Fontanelle 40, 47121 Forlì, Italy
*
Email address for correspondence: e.deangelis@unibo.it

Abstract

The analysis of the energy transfer mechanisms in a filtered wall-turbulent flow is traditionally accomplished via the turbulent kinetic energy balance, as in Härtel et al. (Phys. Fluids, vol. 6, 1994, p. 3130) or via the analysis of the energy spectra, as in Domaradzki et al. (Phys. Fluids, vol. 6, 1994, p. 1583). However, a generalized Kolmogorov equation for channel flow has recently been proven successful in accounting for both spatial fluxes and energy transfer across the scales in a single framework by Marati, Casciola & Piva (J. Fluid Mech., vol. 521, 2004, p. 191). In this context, the same machinery is applied for the first time to a filtered velocity field. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter scale compared to the cross-over scale between production-dominated scales and inertial range, lc, and the reverse energy cascade region ΩB. Finally, we will briefly discuss how the filtered Kolmogorov equation can be used as a new tool for the assessment of large eddy simulation (LES) models. Classical purely dissipative eddy viscosity models will be analysed via an a priori procedure.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonia, R. A., Djenidi, L. & Spalart, P. R. 1994 Anisotropy of the dissipation tensor in a turbulent boundary layer. Phys. Fluids 6, 24752479.CrossRefGoogle Scholar
Baggett, J. S., Jimenez, J. & Kravchenko, A. G. 1997 Resolution requirements in large-eddy simulations of shear flows. CTR, Annu. Res. Briefs pp. 51–66.Google Scholar
Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1980 Improved subgrid scale models for large-eddy simulation. Am. Inst. Aeronaut. Astronaut. Paper pp. 80–1357.CrossRefGoogle Scholar
Carati, D., Ghosal, S. & Moin, P. 1995 On the representation of backscatter in dynamic localization models. Phys. Fluids 7, 606616.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95, 024503.CrossRefGoogle ScholarPubMed
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy at small scales in high shear turbulence. Phys. Fluids 19, 101704.CrossRefGoogle Scholar
Cerutti, S. & Meneveau, C. 1998 Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phys. Fluids 10, 928937.CrossRefGoogle Scholar
Domaradzki, J. A., Liu, W., Härtel, C. & Kleiser, L. 1994 Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids 6, 15831599.CrossRefGoogle Scholar
Domaradzki, J. A. & Saiki, E. M. 1991 Backscatter models for large-eddy simulations. Theor. Comput. Fluid Dyn. 9, 7583.CrossRefGoogle Scholar
Dunn, D. C. & Morrison, J. F. 2003 Anisotropy and energy flux in wall turbulence. J. Fluid Mech. 491, 353378.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.CrossRefGoogle Scholar
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech. 592, 471494.CrossRefGoogle Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Härtel, C., Kleiser, L., Unger, F. & Friedrich, R. 1994 Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids 6, 31303143.CrossRefGoogle Scholar
Hill, R. J. 2002 Exact second-order structure-function relationship. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, H. P. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20, 045101.CrossRefGoogle Scholar
Kerr, R. M., Domaradzki, J. A. & Barbier, G. 1996 Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence. Phys. Fluids 8, 197208.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. SSSR 30, 301; reprinted in Proc. R. Soc. Lond. A 434 (1991), 15–17.Google Scholar
Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 15211536.2.0.CO;2>CrossRefGoogle Scholar
Leslie, D. C. & Quarini, G. L. 1979 The application of turbulence theory to the formulation of subgrid modeling procedures. J. Fluid Mech. 91, 6591.CrossRefGoogle Scholar
Lévêque, E., Toschi, F., Shao, L. & Bertoglio, J. P. 2007 Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 570, 491502.CrossRefGoogle Scholar
Lilly, D. K. 1967 The representation of small scale turbulence in numerical simulation experiments. In Proc. IBM Scientific Computing Symp. Environ. Sci. pp. 195–210.Google Scholar
Lilly, D. K. 1992 A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 4, 633635.CrossRefGoogle Scholar
Lundbladh, A., Henningson, D. S. & Johansson, A. V. 1992 An efficient spectral integration method for the solution of the Navier–Stokes equations. Tech. Rep. FFA-TN-28. Aeronautical Research Institute of Sweden, Department of mechanics, KTH.Google Scholar
Marati, N., Casciola, C. M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Meneveau, C. 1994 Statistics of turbulence subgrid-scales stresses: necessary conditions and experimental tests. Phys. Fluids 6, 815833.CrossRefGoogle Scholar
Nie, Q. & Tanveer, S. 1999 A note on third-order structure functions in turbulence. Proc. R. Soc. Lond. A 455, 16151635.CrossRefGoogle Scholar
Piomelli, U., Cabot, W. H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3, 17661771.CrossRefGoogle Scholar
Piomelli, U., Yu, Y. & Adrian, R. J. 1996 Subgrid-scale energy transfer and near-wall turbulence structure. Phys. Fluids 8, 215224.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rogallo, R. S. & Moin, P. 1984 Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16, 99137.CrossRefGoogle Scholar
Sagaut, P. 2001 Large-Eddy Simulation for Incompressible Flows. An Introduction. Springer.CrossRefGoogle Scholar
Saikrishnan, N., Longmire, E. K., De Angelis, E., Marusic, I., Casciola, C. M. & Piva, R. 2011 Reynolds number effects on scale energy balance in wall turbulence. Phys. Fluids (submitted).CrossRefGoogle Scholar
Schumann, U. 1995 Stochastic backscatter of turbulence energy and scalar variance from random subgrid-scale fluxes. Proc. R. Soc. Lond. A 451, 293318.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. 1. The basic experiment. Mon. Weather Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Van Driest, E. R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23, 10071011.CrossRefGoogle Scholar