Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T03:41:49.406Z Has data issue: false hasContentIssue false

An atomistic model for the Navier slip condition

Published online by Cambridge University Press:  11 February 2021

N.G. Hadjiconstantinou*
Affiliation:
Department of Mechanical Engineering, MIT, Cambridge, MA02139, USA
*
Email address for correspondence: ngh@mit.edu

Abstract

The behaviour of a fluid at the interface with a solid boundary is affected, to a large extent, by the potential landscape imposed on the fluid by the solid. Fluid slip at the interface with a solid boundary is modelled here as forced Brownian motion in a periodic potential landscape. The resulting model goes beyond simple transition-state-theory approaches and uses well-defined atomistic parameters to capture the salient features of the slip process in both the linear and nonlinear forcing regimes, yielding excellent agreement with molecular dynamics simulation results, as well as previous modelling results. An explicit expression for the Navier slip coefficient in terms of molecular-level system parameters is derived.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrat, J.L. & Bocquet, L. 1999 Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss. 112, 119127.CrossRefGoogle Scholar
Bedeaux, D., Albano, A.M. & Mazur, P. 1976 Boundary conditions and non-equilibrium thermodynamics. Physica A 82, 438462.CrossRefGoogle Scholar
Blake, T.D. & Haynes, J.M. 1969 Kinetics of liquid/liquid displacement. J.Colloid Interface Sci. 30, 421423.CrossRefGoogle Scholar
Blake, T.D., Clarke, A., De Coninck, J. & de Ruijter, M.J. 1997 Contact angle relaxation during droplet spreading: comparison between molecular kinetic theory and molecular dynamics. Langmuir 13, 21642166.CrossRefGoogle Scholar
Braun, O.M. & Kivshar, Y.S. 1998 Non-linear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1108.CrossRefGoogle Scholar
De Coninck, J. & Blake, T.D. 2008 Wetting and molecular dynamics simulations of simple liquids. Annu. Rev. Mater. Res. 38, 122.CrossRefGoogle Scholar
Hadjiconstantinou, N.G. 2006 The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18, 111301.CrossRefGoogle Scholar
Heyes, D.M. 1985 Shear thinning of the Lennard–Jones fluid by molecular dynamics. Physica A 133, 473496.CrossRefGoogle Scholar
Lichter, S., Roxin, A. & Mandre, S. 2004 Mechanisms for liquid slip at solid surfaces. Phys. Rev. Lett. 93, 086001.CrossRefGoogle ScholarPubMed
Martini, A., Roxin, A., Snurr, R.Q., Wang, Q. & Lichter, S. 2008 Molecular mechanisms of liquid slip. J.Fluid Mech. 600, 257269.CrossRefGoogle Scholar
Navier, M. 1823 Mémoire sur les lois du mouvement des fluides. Mem. l'Acad. Sci. 6, 389440.Google Scholar
Priezjev, N.V. 2007 a Effect of surface roughness on rate-dependent slip in simple fluids. J.Chem. Phys. 127, 144708.CrossRefGoogle ScholarPubMed
Priezjev, N.V. 2007 b Rate-dependent slip boundary conditions for simple fluids. Phys. Rev. E 75, 051605.CrossRefGoogle ScholarPubMed
Priezjev, N.V. & Troian, S.M. 2006 Influence of periodic wall roughness on the slip behavior at liquid/solid interfaces: molecular scale simulations versus continuum predictions. J.Fluid Mech. 554, 2546.CrossRefGoogle Scholar
Risken, H. 1989 The Fokker–Planck Equation. Springer.CrossRefGoogle Scholar
Risken, H. & Vollmer, H.D. 1979 Brownian motion in periodic potentials; nonlinear response to an external force. Z. Phys. B 33, 297305.CrossRefGoogle Scholar
de Ruijter, M.J., Blake, T.D. & De Coninck, J. 1999 Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir 15, 78367847.CrossRefGoogle Scholar
Sone, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhauser.CrossRefGoogle Scholar
Steele, W.A. 1973 The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36, 317352.CrossRefGoogle Scholar
Thompson, P.A. & Troian, S.M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389 (6649), 360362.CrossRefGoogle Scholar
Wang, G.J., Damone, A., Benfenati, F., Poesio, P., Beretta, G.-P. & Hadjiconstantinou, N.G. 2019 Physics of nanoscale immiscible fluid displacement. Phys. Rev. Fluids 4, 124203.CrossRefGoogle Scholar
Wang, G.J. & Hadjiconstantinou, N.G. 2015 Why are fluid densities so low in carbon nanotubes? Phys. Fluids 27, 052006.CrossRefGoogle Scholar
Wang, G.J. & Hadjiconstantinou, N.G. 2017 Molecular mechanics and structure of the fluid-solid interface in simple fluids. Phys. Rev. Fluids 2, 094201.CrossRefGoogle Scholar
Wang, G.J. & Hadjiconstantinou, N.G. 2019 A universal molecular-kinetic scaling relation for slip of a simple fluid at a solid boundary. Phys. Rev. Fluids 4, 064291.CrossRefGoogle Scholar
Zheng, Z. & Hu, G. 1995 Systematic perturbation solution for Brownian motion in a biased periodic potential field. Phys. Rev. E 52, 109114.CrossRefGoogle Scholar