Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T21:33:34.662Z Has data issue: false hasContentIssue false

Air-levitated platelets: from take off to motion

Published online by Cambridge University Press:  08 February 2017

Dan Soto
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau CEDEX, France
Hélène de Maleprade
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau CEDEX, France
Christophe Clanet
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau CEDEX, France
David Quéré*
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128 Palaiseau CEDEX, France
*
Email address for correspondence: david.quere@espci.fr

Abstract

A plate placed above a porous substrate through which air is blown can levitate if the airflow is strong enough. We first model the flow needed for taking off, and then examine how an asymmetric texture etched on the porous surface induces directional motion of the hovercraft. We discuss how the texture design impacts the propelling efficiency, and how it can be used to manipulate these frictionless objects both in translation and in rotation.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baier, T., Dupeux, G., Herbert, S., Hardt, S. & Quéré, D. 2013 Propulsion mechanisms for Leidenfrost solids on ratchets. Phys. Rev. E 87 (2), 021001.Google Scholar
Bouwhuis, W., Winkels, K. G., Peters, I. R., Brunet, P., van der Meer, D. & Snoeijer, J. H. 2013 Oscillating and star-shaped drops levitated by an airflow. Phys. Rev. E 88 (2), 023017.Google Scholar
Brandt, E. H. 1989 Levitation in physics. Science 243 (4889), 349355.Google Scholar
Brandt, E. H. 2001 Acoustic physics: suspended by sound. Nature 413 (6855), 474475.Google Scholar
Duchemin, L., Lister, J. R. & Lange, U. 2005 Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.Google Scholar
Fitt, A. D., Kozyreff, G. & Ockendon, J. R. 2004 Inertial levitation. J. Fluid Mech. 508, 165174.Google Scholar
Goldshtik, M. A., Khanin, V. M. & Ligai, V. G. 1986 A liquid drop on an air cushion as an analogue of Leidenfrost boiling. J. Fluid Mech. 166, 120.CrossRefGoogle Scholar
Hashmi, A., Xu, Y., Coder, B., Osborne, P. A., Spafford, J., Michael, G. E., Yu, G. & Xu, J. 2012 Leidenfrost levitation: beyond droplets. Sci. Rep. 2, 797.Google Scholar
Hinch, E. J. & Lemaitre, J. 1994 The effect of viscosity on the height of disks floating above an air table. J. Fluid Mech. 273, 313322.Google Scholar
Leidenfrost, J. G. 1966 On the fixation of water in diverse fire. Intl J. Heat Mass Transfer 9 (11), 11531166.Google Scholar
Lemaitre, J., Gervois, A., Peerhossaini, H., Bideau, D. & Troadec, J. P. 1990 An air table designed to study two-dimensional disc packings: preliminary tests and first results. J. Phys. D: Appl. Phys. 23 (11), 13961404.Google Scholar
Linke, H., Alemán, B. J., Melling, L. D., Taormina, M. J., Francis, M. J., Dow-Hygelund, C. C., Narayanan, V., Taylor, R. P. & Stout, A. 2006 Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96 (15), 154502.CrossRefGoogle ScholarPubMed
Nagy, P. T. & Neitzel, G. P. 2008 Optical levitation and transport of microdroplets: proof of concept. Phys. Fluids 20 (10), 101703.Google Scholar
Petit, L. 1986 Sustentation d’un mobile autoporteur. Bulletin de l’Union des Physiciens 685, 981991.Google Scholar
Sakata, K., Watanabe, Y., Okada, J. T., Kumar, M. V., Paradis, P. F. & Ishikawa, T. 2015 FT-IR emissivity measurements of Nb melt using an electrostatic levitation furnace. J. Chem. Thermodyn. 91, 116120.Google Scholar
Snoeijer, J. H. & van der Weele, K. 2014 Physics of the granite sphere fountain. Am. J. Phys. 82 (11), 10291039.Google Scholar
Soto, D., Lagubeau, G., Clanet, C. & Quéré, D. 2016 Surfing on a herringbone. Phys. Rev. Fluids 1 (1), 013902.Google Scholar
Souza, G. R., Molina, J. R., Raphael, R. M., Ozawa, M. G., Stark, D. J., Levin, C. S., Bronk, L. F., Ananta, J. S., Mandelin, J., Georgescu, M.-M. et al. 2010 Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nano. 5 (4), 291296.Google Scholar
Waltham, C., Bendall, S. & Kotlicki, A. 2003 Bernoulli levitation. Am. J. Phys. 71 (2), 176179.Google Scholar
Wang, C. Y. 2012 A porous slider with velocity slip. Fluid Dyn. Res. 44 (6), 065505.Google Scholar
Wells, G. G., Ledesma-Aguilar, R., McHale, G. & Sefiane, K. 2015 A sublimation heat engine. Nat. Commun. 6, 6390.Google Scholar

Soto et al. supplementary movie

Pressure beneath the porous substrate is increased until a glass lamella (a = 15 mm, b = 12 mm, c = 160 _m) starts accelerating owing to viscous entrainment. Once it has reached the end of the track, it is pushed back in the direction opposite to entrainment. Then it decelerates, stops and reaccelerates. Lateral walls placed above the herringbone pattern keep the glider centered for several "pushes".

Download Soto et al. supplementary movie(Video)
Video 6.2 MB

Soto et al. supplementary movie

Pressure beneath the porous substrate is increased until a glass lamella (a = 15 mm, b = 12 mm, c = 160 _m) starts accelerating owing to viscous entrainment. Once it has reached the end of the track, it is pushed back in the direction opposite to entrainment. Then it decelerates, stops and reaccelerates. Lateral walls placed above the herringbone pattern keep the glider centered for several "pushes".

Download Soto et al. supplementary movie(Video)
Video 4.1 MB

Soto et al. supplementary movie

Lamella (a = 30 mm, b = 6 mm, c = 180 _m) climbing a slope of 1.2°_ owing to viscous entrainment. From this lateral view, we can distinguish the holes through which air is injected at the bottom of each chevron.

Download Soto et al. supplementary movie(Video)
Video 3.1 MB

Soto et al. supplementary movie

Lamella (a = 30 mm, b = 6 mm, c = 180 _m) climbing a slope of 1.2°_ owing to viscous entrainment. From this lateral view, we can distinguish the holes through which air is injected at the bottom of each chevron.

Download Soto et al. supplementary movie(Video)
Video 1.6 MB

Soto et al. supplementary movie

Comparison between two designs (regular and truncated herringbones, with same alpha and a central straight section with width bT = 10 mm in the latter case) entraining a glass plate (a = 30 mm, b = 15 mm, c = 1 mm) of mass M = 1 g.

Download Soto et al. supplementary movie(Video)
Video 16.3 MB

Soto et al. supplementary movie

Comparison between two designs (regular and truncated herringbones, with same alpha and a central straight section with width bT = 10 mm in the latter case) entraining a glass plate (a = 30 mm, b = 15 mm, c = 1 mm) of mass M = 1 g.

Download Soto et al. supplementary movie(Video)
Video 8.4 MB

Soto et al. supplementary movie

Rotation on a windmill design. A vertical glass fiber acting as central axis keeps centered a rotating PMMA plate with density 1190 kg/m3, thickness c = 2 mm and side 2b = 30 mm. The plate first accelerates before reaching its terminal speed.

Download Soto et al. supplementary movie(Video)
Video 82 MB

Soto et al. supplementary movie

Rotation on a windmill design. A vertical glass fiber acting as central axis keeps centered a rotating PMMA plate with density 1190 kg/m3, thickness c = 2 mm and side 2b = 30 mm. The plate first accelerates before reaching its terminal speed.

Download Soto et al. supplementary movie(Video)
Video 9.2 MB