Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-17T15:06:06.290Z Has data issue: false hasContentIssue false

Air flow and dispersion in rough terrain: a report on Euromech 173

Published online by Cambridge University Press:  20 April 2006

J. C. R. Hunt
Affiliation:
DAMTP, Silver Street, Cambridge CB3 9EW
D. P. Lalas
Affiliation:
National Observatory of Athens, Athens, Greece
D. N. Asimakopoulos
Affiliation:
Department of Applied Physics, University of Athens, Athens, Greece

Abstract

Euromech Colloquium 173 was held at Delphi from 13-16 September 1983. Thirty-six participants from eleven countries were present. Papers were presented on: (1) various approaches to calculating and computing air flow in rough terrain in the presence of changes in surface roughness, elevation and temperatures, including methods for interpolating, subject to certain physical constraints, the wind field from measurements at various fixed stations; (2) measurement and satellite photography of air flow in rough terrain near isolated mountains, near coastlines, over mountains, and over mountains near coastlines; (3) the applications of these studies to air-pollution dispersion and the exploitation of wind energy in rough terrain. The discussions led to agreement about how best to use and relate the various techniques for calculating air flows, the role of new techniques in remote sensing for improving understanding of flow in rough terrain, the factors determining air-pollution concentration that need particular study, and the special kinds of information about turbulence needed for estimating wind energy in rough terrain.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonio, J., Bergeles, G. & Athanassiades, N.* Flow development behind surface mounted obstacles.
Beljaars, A. C. M.* Some properties of the non-homogeneous surface layer.
Beljaars, A. C. M. 1982 The derivation of fluxes from profiles in perturbed areas. Boundary-Layer Met. 24, 3555.Google Scholar
Beljaars, A. C. M., Schotanus, P. & Nieuwstadt, F. T. M. 1983 Surface layer similarity under non-uniform fetch conditions. J. Climate Appl. Met. (to appear).Google Scholar
Bell, R. C. & Thompson, R. O. R. Y. 1980 Valley ventilation by cross winds. J. Fluid Mech. 96, 757767.Google Scholar
Bergeles, G. & Athanassiades, N.* Computation of the flow over a two-dimensional hill.
Bois, P. A.* Asymptotic modelization of lee waves by confined flows.
Bois, P. A. 1982 Rôle de la viscosité dans les ordes de relief. C. R. Acad. Sci. Paris 294, II, 823825.Google Scholar
Bois, P. A. 1984 Asymptotic theory of Boussinesq waves in the atmosphere. Proc. Course ‘Models for Atmospheric Flows’, Centre International des Sciences Mécaniques, Udine.
Bouquet, R.* Wind tunnel study of the wind field structure around an airport.
Bradshaw, P. & Wong, F. Y. F. 1972 The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52, 113135.Google Scholar
Bradley, E. F. 1980 An experimental study of the profile of wind speed, shearing stress and turbulence at the crest of a large hill. Q. J. R. Met. Soc. 106, 101.Google Scholar
Bradley, E. F. 1983 Stable and unstable airflow over a small escarpment. In Proc. 6th Wind Engng Conf., Brisbane.
Brighton, P. W. M. 1977 Boundary layer and stratified flow over obstacles. Ph.D. Dissertation, University of Cambridge.
Brighton, P. W. M. 1978 Strongly stratified flow past three-dimensional obstacles and mesoscale vortex sheets in the atmosphere. Q. J. R. Met. Soc. 104, 289.Google Scholar
Britter, R. E., Hunt, J. C. R. & Richards, K. J. 1981 Analysis and wind-tunnel studies of speed up, roughness effects and turbulence over a two-dimensional hill. Q. J. R. Met. Soc. 107, 91.Google Scholar
Callander, B. A., Jenkins, G. J., Maryon, R. H. & Whitlock, J. B. G.* Short range dispersion experiments made in hilly terrain.
Cole, R. S., Asimakopoulos, D. N., Moulsly, T. J., Caughey, S. J. & Crease, B. A. 1980 Some aspects of the constriction and use of atmospheric acoustic sounders. Radio & Electronic Engr 50, 585597.Google Scholar
Craik, A. D. D.* A laminar mixing mechanism for the air flow over undular terrain.
Craik, A. D. D. 1982 Wave-induced longitudinal vortex instability in shear flows. J. Fluid Mech. 125, 3752.Google Scholar
Dalu, G. A.* Modelling of air flow over Sardinia.
Dalu, G. A. & Cima, A. 1983 Three-dimensional air flow over Sardinia. Nuovo Cim. 6, 62886308.Google Scholar
Deligiorgi, D., Lalas, D. P., Asimakopoulos, D. N. & Helmis, C. G.* The structure of the atmospheric boundary layer over a steep hill.
Helmis, C., Asimakopoulos, D. N. & Cole, R. S. 1984 A low-level atmospheric vertical velocity comparison between a high resolution acoustic sounder and turbulence probe. IEEE Trans. Geosci. & Remote Sensing (to appear).Google Scholar
Hogstrom, U., Alexandersson, H. & Bergstrom, H.* A case study of a boundary layer and regime in stably stratified air observed at the island of Gotland in the Baltic Sea.
Hunt, J. C. R.* Air flow and dispersion among groups of hills and in sea breezes.
Hunt, J. C. R., Kaimal, J. C., Kaynor, J. & Korrel, A. 1983 Observations of turbulence structure in stable layers at the Boulder Atmospheric Observatory. NOAA Environ. Res. Lab. Rep., Boulder, Colorado.Google Scholar
Hunt, J. C. R., Richards, K. J. & Brighton, P. W. M. 1984 Turbulent stratified flow over hills with low slope. Submitted to Q. J. R. Met. Soc.Google Scholar
Jackson, P. S. & Hunt, J. C. R. 1975 Turbulent wind flow over low hills. Q. J. R. Met. Soc. 101, 929.Google Scholar
Jenkins, G. J., Mason P. J., Moore, W. H. & Sykes, R. I. 1981 Measurements of the flow structure around Ailsa Craig, a steep 3-dimensional isolated hill. Q. J. R. Met. Soc. 197, 833852.Google Scholar
Jensen, N. O. & Peterson, E. W. 1978 On the escarpment wind profile. Q. J. R. Met. Soc. 104, 719.Google Scholar
Khurshudyan, W. W., Snyder, W. H. & Nekrasov, J. 1981 Air flow and diffusion of pollution over two-dimensional hills. Environ. Prot. Agency, Rep. Res. Tri. Park, NC EPA-600-4-81-967.Google Scholar
Lalas, D. P.* Modelling of the flow over Crete for wind energy estimation.
Lalas, D. P., Asimakopoulos, D. N., Deligiorgi, D. G. & Helmis, C. G. 1983 Sea breeze circulation and photochemical pollution in Athens, Greece. Atmos. Environ. 17, 1621.Google Scholar
Leibovich, S. 1983 The form and dynamics of Langmuir circulation. Ann. Rev. Fluid Mech. 15, 391427.Google Scholar
Ley, A. 1982 A random walk simulation of two-dimensional turbulent diffusion in the neutral surface layer. Atmos. Environ. 16, 2799.Google Scholar
Mahrer, Y. & Pielke, R. A. 1975 Numerical study of the air flow over mountains using two-dimensional version of the University of Virginia mesoscale model. J. Atmos. Sci. 32, 2144.Google Scholar
Maryon, R. H. & Whitlock, J. B. G. 1984 Short-range dispersion experiments on the windward slope of Blashaval, North Uist. Meteorological Office. Met. O 14 Internal Memo. TDN 150.Google Scholar
Merkine, L. O. 1975 Steady finite-amplitude baroclinic flow over long topography in a rotating stratified atmosphere. J. Atmos. Sci. 32, 1887.Google Scholar
Moussipoulos, N., Grassmann, F., Haschke, D., & Pandolfo, J. P.* Development of a numerical model for simulations of air pollution episodes in Athens, Greece.
Newley, T. J., Pearson, H. J. & Hunt, J. C. R. 1984 Stably stratified rotating flow through groups of obstacles (to be submitted for publication).
Orlanski, I. 1975 A rational subdivision of scales of atmospheric processes. Bull. Am. Met. Soc. 56, 527530.Google Scholar
Plate, E. J. 1982 Engineering Meteorology. Elsevier.
Panofsky, H. A., Larko, D., Lipschutz, R., Stone, G., Bradley, E. F., Bowen, A. J. & Højstrup, J. 1982 Spectra of velocity of components over complex terrain. Q. J. R. Met. Soc. 108, 215.Google Scholar
Petrakis, M. & Lalas, D. P.* Air flow in the Athens basin.
Phillips, G. T.* Wind energy siting methodology and SIGMET model verification studies.
Pretel, J. 1984 Zur Beschreibung der Terraininhomogenität in der Bodenschicht der Atmosphäre. Z. Met. 34, Hft 4.Google Scholar
Pretel, J., Zelený, J. & Křižek, P. 1984 Verwendung der Ergebnisse der MESP-81 zu weiteren Untersuchungen der Bodenschicht der Atmosphäre über gegliederten Gelanden. Geod. Geophys. Veröff. R. II der NKGG, Berlin.Google Scholar
Pretel, J. & Zelený, J.* Effects of non-homogeneous terrain and roughness on turbulence in the surface boundary layer.
Sacré, C.* Simulation of the simultaneous effect of roughness and two-dimensional topography on wind speed for wind energy applications.
Sacré, C. 1981 Simulation of two dimensional air flow above complex terrain: roughness and topographical effects. In Proc. Colloquium on Designing with the Wind. Centre Sci. Tech. du Batiment, Nantes.
Scorer, R. S.* The use of satellite observations in the study of air flow affected by obstacles.
Scorer, R. S. 1972 Clouds of the World. Davis & Charles.
Scorer, R. S. 1984 Cloud Formation Studies by Satellite. Ellis Horwood.
Sherman, C. A. 1978 A mass consistent model for wind fields over complex terrain. J. Appl. Met. 17, 312319.Google Scholar
Simpson, J. E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Ann. Rev. Fluid Mech. 14, 213.Google Scholar
Simpson, J. E., Mansfield, D. A. & Milford, J. R. 1977 Inland penetration of sea-breeze fronts. Q. J. R. Met. Soc. 103, 4776.Google Scholar
Simpson, J. E. & Rider, G. C. 1968 Two crossing fronts on radar. Met. Mag. 97, 2430.Google Scholar
Smedman, A. S.* Some observations of turbulence structure near a wooded coastline.
Smedman, A. S. 1983 Some observations of turbulence structure near a wooded coastline. Rep. 68, Met. Dept Uppsala Univ.Google Scholar
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181296.Google Scholar
Sykes, R. I. 1978 Stratification effects in boundary layer flow over hills. Proc. R. Soc. Lond. A 361, 225.Google Scholar
Tampieri, F.* Two-dimensional stratified fluid flow over valleys.
Taylor, P. A., Walmsley, J. L. & Salmon, J. R. 1983 A simple model of neutrally stratified boundary-layer flow over real terrain incorporating wavenumber-dependent scaling. Boundary-Layer Met. 26, 169189.Google Scholar
Townsend, A. A. 1965 The response of a turbulent boundary layer to abrupt changes in surface conditions. J. Fluid Mech. 22, 299822.Google Scholar
Walmsley, J. L., Taylor, P. A. & Salmon, J. R.* Some effects of thermal stratification on air flow over three-dimensional hills.
Walmsley, J. L., Salmon, J. R. & Taylor, P. A. 1982 On the application of a model of boundary-layer flow over low hills to real terrain. Boundary Layer Met. 23, 1746.Google Scholar
Wunsch, C. & Minster, J.-F. 1982 Methods for box models and ocean circulation tracers-mathematical programming and non-linear inverse theory. J. Geophys. Res. 87, 56475662.Google Scholar