Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T02:13:42.589Z Has data issue: false hasContentIssue false

The tidally induced bottom boundary layer in the rotating frame: development of the turbulent mixed layer under stratification

Published online by Cambridge University Press:  25 January 2009

KEI SAKAMOTO*
Affiliation:
Oceanographic Research Department, Meteorological Research Institute, Tsukuba, Japan Center for Climate System Research, University of Tokyo, Kashiwa, Japan
KAZUNORI AKITOMO
Affiliation:
Department of Geophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
*
Email address for correspondence: ksakamot@mri-jma.go.jp

Abstract

To investigate turbulent properties and the developing mechanisms of the tidally induced bottom boundary layer in the linearly stratified ocean, numerical experiments have been executed with a non-hydrostatic three-dimensional model in the rotating frame, changing the temporal Rossby number Rot = |σ/f|, i.e. the ratio of the tidal frequency σ to the Coriolis parameter f. After the flow transitions to turbulence, the entire water column can be characterized by three layers: the mixed layer where density is homogenized and the flow is turbulent (z < zm); the stratified layer where the initial stratification remains and the flow is laminar (z > zt); and the interfacial layer between them where the flow is turbulent but the stratification remains (zm < z < zt). Turbulence is scaled by the frictional velocity uτ and the mixed-layer thickness zm (uτ and uτ/N where N is the buoyancy frequency) in the mixed (interfacial) layer, and has similarity. The mixed layer is thickened by the process where light water of the upper stratified layer is mixed with the lower unstratified layer water through the interfacial layer. As Rot approaches unity, i.e. near the critical latitude, the mixed layer develops more rapidly according to the following mechanism. As becomes Rot closer to unity, the current shear in the interfacial layer is intensified, since the difference of velocity becomes larger between the lower turbulent mixed and upper laminar stratified layers, and this leads to thickening of the interfacial layer. As a result, density deviation of the water entrained from above becomes larger, and this causes more rapid development of the mixed layer. In terms of the energy conversion from the eddy kinetic energy (EKE) to the potential energy (PE), the efficiency factor β which is the ratio of the conversion rate from EKE to PE to that from the tidal shear to EKE increased from 0.25% for Rot = 0.5 to 3.5% for Rot = 1.05 on average. When the time is normalized by the period required for the mixed layer to be thickened to the unstratified turbulent boundary layer δ = uτ/|f+σ|, the mixed layer development occurred in a similar manner in all cases. This similarity suggests the possibility of universal formulation for the turbulent tidal mixing under stratification.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aelbrecht, D., D'Hieres, G. C. & Renouard, D. 1999 Experimental study of the Ekman layer instability in steady or oscillating flows. Continental Shelf Res. 19, 18511867.CrossRefGoogle Scholar
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 2. Numerical simulations. J. Fluid Mech. 225, 423444.CrossRefGoogle Scholar
Akitomo, K. 1999 Open-ocean deep convection due to thermobaricity 2. Numerical experiments. J. Geophys. Res. 104, 52355249.CrossRefGoogle Scholar
André, J. C., Moor, G. D., Lacarrére, P., Therry, G. & Vachat, R. D. 1978 Modeling the 24-hour evolution of the men and turbulent structures of the planetary boundary layer. J. Atmos. Sci. 35, 18611883.2.0.CO;2>CrossRefGoogle Scholar
Baines, P. G. & Condie, S. 1998 Observations and modelling of Antarctic downslope flows: a review. Antarct. Res. Ser. 75, 2949.Google Scholar
Bowman, M. J. 1980 M2 tidal effects in Greater Cook Strait, New Zealand. J. Geophys. Res. 85, 27282742.CrossRefGoogle Scholar
Burchard, H. 2001 On the q 2l equation by Mellor and Yamada (1982). J. Phys. Oceanogr. 31, 13771387.2.0.CO;2>CrossRefGoogle Scholar
Burchard, H., Petersen, O. & Rippeth, T. P. 1998 Comparing the performance of the Mellor–Yamada and the k–ϵ two-equation turbulence models. J. Geophys. Res. 103, 10 54310 554.CrossRefGoogle Scholar
Chen, D., Ou, H. W. & Dong, C. 2003 A model study of internal tides in coastal frontal zone. J. Phys. Oceanogr. 33, 170187.2.0.CO;2>CrossRefGoogle Scholar
Chen, R. T., Ling, C. & Gartner, J. W. 1999 Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California. J. Geophys. Res. 104, 77157728.CrossRefGoogle Scholar
Coleman, G. N. 1999 Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer. J. Atmos. Sci. 56, 891900.2.0.CO;2>CrossRefGoogle Scholar
Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1992 Direct simulation of the stably stratified turbulent Ekman layer. J. Fluid Mech. 244, 677712.CrossRefGoogle Scholar
Durski, S. M., Glenn, S. M. & Haidvogel, D. B. 2004 Vertical mixing schemes in the coastal ocean: comparison of the level 2.5 Mellor–Yamada scheme with an enhanced version of the K profile parameterization. J. Geophys. Res. 109, C04015.CrossRefGoogle Scholar
Fearnhead, P. G. 1975 On the formation of fronts by tidal mixing around the British Isles. Deep-Sea Res. 22, 311321.Google Scholar
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.CrossRefGoogle Scholar
Foldvik, A., Middleton, J. H. & Foster, T. D. 1990 The tides of the southern Weddell Sea. Deep-Sea Res. 37, 13451362.CrossRefGoogle Scholar
Foldvik, A., Gammelsrød, T., Østerhus, S., Fahrbach, E., Rohardt, G., Schröder, M., Nicholls, K. W., Padman, L. & Woodgate, R. A. 2004 Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res. 109, C02015.CrossRefGoogle Scholar
Foster, T. D. & Carmack, E. C. 1976 Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. 23, 301317.Google Scholar
Foster, T. D., Foldvik, A. & Middleton, J. H. 1987 Mixing and bottom water formation in the shelf break region of the southern Weddell Sea. Deep-Sea Res. 34, 17711794.CrossRefGoogle Scholar
Furevik, T. & Foldvik, A. 1996 Stability at M(2) critical latitude in the Barents Sea. J. Geophys. Res. 101, 88238837.CrossRefGoogle Scholar
Galperin, B., Kantha, L. H., Hassid, S. & Rosati, A. 1988 A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 5562.2.0.CO;2>CrossRefGoogle Scholar
Gordon, A. L. 1998 Western Weddell Sea thermohaline stratification. Ocean, ice and atmosphere: interactions at the Antarctic continental margin. Antarct. Res. Ser. 75, 215240.Google Scholar
Guo, X. & Valle-Levinson, A. 2007 Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Continental Shelf Res. 27, 2042.CrossRefGoogle Scholar
Kantha, L. H., Phillips, O. M. & Azad, R. S. 1977 On turbulent entrainment at a stable density interface. J. Fluid Mech. 79, 753768.CrossRefGoogle Scholar
Kato, H. & Phillips, O. M. 1969 On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech. 37, 643655.CrossRefGoogle Scholar
Killworth, P. D. & Edwards, N. R. 1999 A turbulent bottom boundary layer code for use in numerical ocean models. J. Phys. Oceanogr. 29, 12211238.2.0.CO;2>CrossRefGoogle Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363403.CrossRefGoogle Scholar
Li, M., Zhong, L. & Boicourt, W. C. 2005 Simulations of Chesapeake Bay estuary: sensitivity to turbulence mixing parameterizations and comparison with observations. J. Geophys. Res. 110, C12004.CrossRefGoogle Scholar
Makinson, K. 2002 Modeling tidal current profiles and vertical mixing beneath Filchner–Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr. 32, 202215.2.0.CO;2>CrossRefGoogle Scholar
Makinson, K., Schröder, M. & Østerhus, S. 2006 Effect of critical latitude and seasonal stratification on tidal current profiles along Ronne Ice Front, Antarctica. J. Geophys. Res. 111, C03022.CrossRefGoogle Scholar
Mellor, G. L. & Yamada, T. 1982 Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851875.CrossRefGoogle Scholar
Miles, J. 1986 Richardson's criterion for the stability of stratified shear flow. Phys. Fluids 29, 34703471.CrossRefGoogle Scholar
Moore, M. J. & Long, R. R. 1971 An experimental investigation of turbulent stratified shearing flow. J. Fluid Mech. 49, 635655.CrossRefGoogle Scholar
Nakanishi, M. 2001 Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Met. 99, 349378.CrossRefGoogle Scholar
Nakanishi, M. & Niino, H. 2004 An improved Mellor–Yamada level-3 model with condensation physics: its design and verification. Boundary-Layer Met. 112, 131.CrossRefGoogle Scholar
Nakano, H. & Suginohara, N. 2002 Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J. Phys. Oceanogr. 32, 12091227.2.0.CO;2>CrossRefGoogle Scholar
Narimousa, S. & Fernando, H. J. S. 1987 On the sheared density interface of an entraining stratified fluid. J. Fluid Mech. 174, 122.CrossRefGoogle Scholar
Nimmo Smith, W. A. M., Katz, J. & Osborn, T. R. 2005 On the structure of turbulence in the bottom boundary layer of the coastal ocean. J. Phys. Oceanogr. 35, 7293.CrossRefGoogle Scholar
Nost, E. 1994 Calculating tidal current profiles from vertically integrated models near the critical latitude in the Barents Sea. J. Geophys. Res. 99, 78857901.CrossRefGoogle Scholar
Nunes Vaz, R. A. & Simpson, J. H. 1994 Turbulence closure modeling of estuarine stratification. J. Geophys. Res. 99, 1614316160.CrossRefGoogle Scholar
Pereira, F. P., Beckmann, A. & Hellmer, H. H. 2002 Tidal mixing in the southern Weddell Sea: Results from a three-dimensional model. J. Phys. Oceanogr. 32, 21512170.2.0.CO;2>CrossRefGoogle Scholar
Robertson, R. 2001 a Internal tides and baroclinicity in the southern Weddell Sea 1. Model description. J. Geophys. Res. 106, 27 00127 016.CrossRefGoogle Scholar
Robertson, R. 2001 b Internal tides and baroclinicity in the southern Weddell Sea 2. Effects of the critical latitude and stratification. J. Geophys. Res. 106, 27 01727 034.CrossRefGoogle Scholar
Robertson, R. 2005 Baroclinic and barotropic tides in the Weddell Sea. Antarct. Sci. 17, 461474.CrossRefGoogle Scholar
Sakamoto, K. & Akitomo, K. 2006 Instabilities of the tidally induced bottom boundary layer in the rotating frame and their mixing effect. Dyn. Atmos. Oceans 41, 191211.CrossRefGoogle Scholar
Sakamoto, K. & Akitomo, K. 2008 The tidally induced bottom boundary layer in the rotating frame: similarity of turbulence. J. Fluid Mech. 615, 125.CrossRefGoogle Scholar
Schumacher, D., Kinder, T. H., Pashinski, D. J. & Charnell, R. L. 1979 A structural front over the continental shelf of the Eastern Bering Sea. J. Phys. Oceanogr. 9, 7987.2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. H. & Hunter, J. R. 1974 Fronts in the Irish Sea. Nature 250, 404406.CrossRefGoogle Scholar
Stephenson, P. W. & Fernando, H. J. S. 1991 Turbulence and mixing in a stratified shear flow. Geophys. Astrophys. Fluid Dyn. 59, 147164.CrossRefGoogle Scholar
Strang, E. J. & Fernando, H. J. S. 2001 Entrainment and mixing in stratified shear flows. J. Fluid Mech. 428, 349386.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. The MIT Press.CrossRefGoogle Scholar
Therry, G. & Lacarrére, P. 1983 Improving the eddy kinetic energy model for planetary boundary layer description. Boundary-Layer Met. 25, 6388.CrossRefGoogle Scholar
Warner, J. C., Geyer, W. R. & Lerczak, J. Aw. 2005 Numerical modeling of an estuary: A comprehensive skill assessment. J. Geophys. Res. 110, C05001.CrossRefGoogle Scholar
Werner, S. R., Beardsley, R. C., Lentz, S. J., Hebert, D. L. & Oakey, N. S. 2003 Observations and modelling of the tidal bottom boundary layer on the southern flank of Georges Bank. J. Geophys. Res. 108, C118005.Google Scholar
Whitworth III, T., Orsi, A. H., Kim, S.-J., Norlin, W. D. & Locarnini, R. A. 1998 Water masses and mixing near the Antarctic slope front. Antarct. Res. Ser. 75, 127.Google Scholar
Yanagi, T. & Koike, T. 1987 Seasonal variation in thermohaline and tidal fronts, Seto Inland Sea, Japan. Continental Shelf Res. 7, 149160.CrossRefGoogle Scholar
Yanagi, T. & Ohba, T. 1985 A tidal front in the Bungo Channel. Bull. on Coastal Oceanogr. 23, 1925.Google Scholar