Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-kbvt8 Total loading time: 0.21 Render date: 2021-10-19T10:15:27.109Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The spin up of a stratified fluid

Published online by Cambridge University Press:  28 March 2006

Joseph Pedlosky
Affiliation:
Department of Mathematics, M.I.T., Cambridge, Massachusetts

Abstract

The process by which a stratified, viscous fluid adjusts to small changes in the rotation rate of its container is studied. This paper treats the cases of homogeneous layers of different densities, as well as fluids which are continuously stratified.

It is shown that in several important cases the spin-up process, especially in the continuously stratified case, has a time scale which is very much longer than for homogeneous fluids, and that diffusion is the governing mechanism in the adjustment process.

In all cases the detailed problem, including a discussion of the side-wall boundary layers, is presented. Some novel features of the side-wall layers are discussed for the continuously stratified fluids, while in one case it is shown that no boundary layers appear during the transient approach to equilibrium.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greenspan, H. P. & Howard, L. N. 1963 On a time-dependent motion of a rotating fluid J. Fluid Mech. 17, 385404.Google Scholar
Holton, J. R. 1965 The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Parts I and II J. Atmos. Sci. 22, no. 4, 402411; no. 5, 535–540.Google Scholar
45
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The spin up of a stratified fluid
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The spin up of a stratified fluid
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The spin up of a stratified fluid
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *