Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-14T09:08:56.299Z Has data issue: false hasContentIssue false

Separation length scaling for dual-incident shock wave–turbulent boundary layer interactions with different shock wave distances

Published online by Cambridge University Press:  30 March 2023

Xin Li
Affiliation:
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Yue Zhang*
Affiliation:
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Huijun Tan*
Affiliation:
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Shu Sun
Affiliation:
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Hang Yu
Affiliation:
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Yi Jin
Affiliation:
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Jie Zhou
Affiliation:
Science and Technology on Altitude Simulation Laboratory, AECC Sichuan Gas Turbine Establishment, Mianyang 621000, PR China
*
Email addresses for correspondence: y.zhang@nuaa.edu.cn, thj@263.net
Email addresses for correspondence: y.zhang@nuaa.edu.cn, thj@263.net

Abstract

In this study, the length scaling for the boundary layer separation induced by two incident shock waves is experimentally and analytically investigated. The experiments are performed in a Mach 2.73 flow. A double-wedge shock generator with two deflection angles ($\alpha _1$ and $\alpha _2$) is employed to generate two incident shock waves. Two deflection angle combinations with an identical total deflection angle are adopted: ($\alpha _1 = 7^\circ$, $\alpha _2 = 5^\circ$) and ($\alpha _1 = 5^\circ$, $\alpha _2 = 7^\circ$). For each deflection angle combination, the flow features of the dual-incident shock wave–turbulent boundary layer interactions (dual-ISWTBLIs) under five shock wave distance conditions are examined via schlieren photography, wall-pressure measurements and surface oil-flow visualisation. The experimental results show that the separation point moves downstream with increasing shock wave distance ($d$). For the dual-ISWTBLIs exhibiting a coupling separation state, the upstream interaction length ($L_{int}$) of the separation region approximately linearly decreases with increasing $d$, and the decrease rate of $L_{int}$ with $d$ increases with the second deflection angle under the condition of an identical total deflection angle. Based on control volume analysis of mass and momentum conservations, the relation between $L_{int}$ and $d$ is analytically determined to be approximately linear for the dual-ISWTBLIs with a coupling separation region, and the slope of the linear relation obtained analytically agrees well with that obtained experimentally. Furthermore, a prediction method for $L_{int}$ of the dual-ISWTBLIs with a coupling separation region is proposed, and the relative error of the predicted $L_{int}$ in comparison with the experimental result is $\sim$10 %.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babinsky, H. & Harvey, J.K. 2011 Shock Wave-Boundary-Layer Interactions. Cambridge University Press.10.1017/CBO9780511842757CrossRefGoogle Scholar
Babinsky, H. & Ogawa, H. 2008 SBLI control for wings and inlets. Shock Waves 18 (2), 8996.10.1007/s00193-008-0149-7CrossRefGoogle Scholar
Babinsky, H., Oorebeek, J. & Cottingham, T. 2013 Corner effects in reflecting oblique shock-wave/boundary-layer interactions. AIAA Paper 2013-0859.10.2514/6.2013-859CrossRefGoogle Scholar
Benek, J.A., Suchyta, C. & Babinsky, H. 2014 The effect of wind tunnel size and shock strength on incident shock boundary layer interaction experiments. AIAA Paper 2014-3336.10.2514/6.2014-3336CrossRefGoogle Scholar
Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D. & Eaton, J.K. 2014 Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 562.10.1017/jfm.2014.505CrossRefGoogle Scholar
Bookey, P., Wyckham, C. & Smits, A. 2005 Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA Paper 2005-4899.CrossRefGoogle Scholar
Brooks, J.M., Gupta, A.K., Smith, M. & Marineau, E.C. 2015 Development of particle image velocimetry in a Mach 2.7 wind tunnel at AEDC White Oak. AIAA Paper 2015-1915.Google Scholar
Chapman, D.R., Kuehn, D.M. & Larson, H.K. 1957 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. Tech. Rep. 1356. NACA.Google Scholar
Clemens, N.T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.CrossRefGoogle Scholar
Cousteix, J. 1989 Turbulence et Couche Limite. Cepadues Editions.Google Scholar
Daub, D., Willems, S. & Gülhan, A. 2016 Experimental results on unsteady shock-wave/boundary-layer interaction induced by an impinging shock. CEAS Space J. 8 (1), 312.10.1007/s12567-015-0102-4CrossRefGoogle Scholar
Dolling, D.S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Délery, J. & Dussauge, J.P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19 (6), 453468.CrossRefGoogle Scholar
Gaitonde, D.V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aeosp. Sci. 72, 8099.CrossRefGoogle Scholar
Green, J.E. 1970 Interactions between shock waves and turbulent boundary layers. Prog. Aeosp. Sci. 11, 235340.CrossRefGoogle Scholar
Grossman, I.J. & Bruce, P.J.K. 2018 Confinement effects on regular-irregular transition in shock-wave-boundary-layer interactions. J. Fluid Mech. 853, 171204.CrossRefGoogle Scholar
Helm, C.M. & Martín, M.P. 2021 Scaling of hypersonic shock/turbulent boundary layer interactions. Phys. Rev. Fluids 6 (7), 074607.CrossRefGoogle Scholar
Herrmann, C. & Koschel, W. 2002 Experimental investigation of the internal compression inside a hypersonic intake. AIAA Paper 2002-4130.Google Scholar
Hong, Y., Li, Z. & Yang, J. 2021 Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions. Chin. J. Aeronaut. 34 (5), 504509.CrossRefGoogle Scholar
Huang, H.X., Tan, H.J., Sun, S. & Ling, Y. 2016 Evolution of supersonic corner vortex in a hypersonic inlet/isolator model. Phys. Fluids 28 (12), 126101.CrossRefGoogle Scholar
Huang, H.X., Tan, H.J., Sun, S. & Sheng, F.J. 2017 Unthrottled flows with complex background waves in curved isolators. AIAA J. 55 (9), 29422955.Google Scholar
Humble, R.A., Elsinga, G.E., Scarano, F. & Van Oudheusden, B.W. 2009 a Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.Google Scholar
Humble, R.A., Scarano, F. & Van Oudheusden, B.W. 2009 b Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.CrossRefGoogle Scholar
Jaunet, V., Debieve, J.F. & Dupont, P. 2014 Length scales and time scales of a heated shock-wave/boundary-layer interaction. AIAA J. 52 (11), 25242532.CrossRefGoogle Scholar
Kornilov, V.I. 1997 Correlation of the separation region length in shock wave/channel boundary layer interaction. Exp. Fluids 23 (6), 489497.CrossRefGoogle Scholar
Krishnan, L., Sandham, N.D. & Steelant, J. 2009 Shock-wave/boundary-layer interactions in a model scramjet intake. AIAA J. 47 (7), 16801691.CrossRefGoogle Scholar
Li, N., Chang, J.T., Xu, K.J., Yu, D.R., Bao, W. & Song, Y.P. 2018 Oscillation of the shock train in an isolator with incident shocks. Phys. Fluids 30 (11), 116102.Google Scholar
Li, X., Tan, H.J., Zhang, Y., Huang, H.X., Guo, Y.J. & Lin, Z.K. 2020 Flow patterns of dual-incident shock waves/turbulent boundary layer interaction. J. Vis. 23 (6), 931935.10.1007/s12650-020-00679-2CrossRefGoogle Scholar
Li, X., Zhang, Y, Tan, H.J., Jin, Y. & Li, C. 2022 Comparative study on single-incident and dual-incident shock wave/turbulent boundary layer interactions with identical total deflection angle. J. Fluid Mech. 940, A7.CrossRefGoogle Scholar
Matheis, J. & Hickel, S. 2015 On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech. 776, 200234.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at $M=2.25$. Phys. Fluids 18 (6), 065113.CrossRefGoogle Scholar
Priebe, S. & Martín, M.P. 2012 Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J. Fluid Mech. 699, 149.CrossRefGoogle Scholar
Priebe, S., Wu, M. & Martin, M.P. 2009 Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction. AIAA J. 47 (5), 11731185.CrossRefGoogle Scholar
Ramesh, M., Tannehill, J. & Miller, J. 2000 Correlations to predict the streamwise influence regions of two-dimensional turbulent shock separated flows. AIAA Paper 2000-932.10.2514/6.2000-932CrossRefGoogle Scholar
Ramesh, M.D. & Tannehill, J.C. 2004 Correlations to predict the streamwise influence regions in supersonic turbulent flows. J. Aircraft 41 (2), 274283.CrossRefGoogle Scholar
Reda, D.C. & Murphy, J.D. 1973 Shock wave/turbulent boundary-layer interactions in rectangular channels. AIAA J. 11 (2), 139140.CrossRefGoogle Scholar
Settles, G.S. & Bogdonoff, S.M. 1982 Scaling of two- and three-dimensional shock/turbulent boundary-layer interactions at compression corners. AIAA J. 20 (6), 782789.CrossRefGoogle Scholar
Souverein, L.J. 2010 On the scaling and unsteadiness of shock induced separation. PhD thesis, Delft University of Technology.Google Scholar
Souverein, L.J., Bakker, P.G. & Dupont, P. 2013 A scaling analysis for turbulent shock-wave/boundary-layer interactions. J. Fluid Mech. 714, 505535.10.1017/jfm.2012.495CrossRefGoogle Scholar
Spaid, F.W. & Frishett, J.C. 1972 Incipient separation of a supersonic, turbulent boundary layer, including effects of heat transfer. AIAA J. 10 (7), 915922.10.2514/3.50245CrossRefGoogle Scholar
Tan, H.J., Sun, S. & Huang, H.X. 2012 Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves. Exp. Fluids 53 (6), 16471661.CrossRefGoogle Scholar
Tong, F.L., Li, X.L., Yuan, X.X. & Yu, C.P. 2020 Incident shock wave and supersonic turbulent boundarylayer interactions near an expansion corner. Comput. Fluids 198, 104385.Google Scholar
Touré, P.S.R. & Schülein, E. 2020 Scaling for steady and traveling shock wave/turbulent boundary layer interactions. Exp. Fluids 61, 119.CrossRefGoogle Scholar
Viswanath, P.R. 1988 Shock-wave-turbulent-boundary-layer interaction and its control: A survey of recent developments. Sadhana 12 (1), 45104.CrossRefGoogle Scholar
Wang, B., Sandham, N.D., Hu, Z. & Liu, W. 2015 Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. J. Fluid Mech. 767, 526561.10.1017/jfm.2015.58CrossRefGoogle Scholar
Wang, Z., Chang, J.T., Hou, W.X. & Yu, D.R. 2020 Low-frequency unsteadiness of shock-wave/boundary-layer interaction in an isolator with background waves. Phys. Fluids 32 (5), 056105.Google Scholar
Wu, M. & Martin, M.P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45 (4), 879889.CrossRefGoogle Scholar
Xiang, X. & Babinsky, H. 2019 Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels. J. Fluid Mech. 862, 10601083.10.1017/jfm.2018.983CrossRefGoogle Scholar
Xie, W.Z., Yang, S.Z., Zhao, Q.W., Zhang, Q. & Guo, S.M. 2022 Momentum balance based model for predicting the scale of separation bubbles induced by incident shock wave/turbulent boundary layer interactions. Eur. J. Mech. B/Fluids 95, 178193.CrossRefGoogle Scholar
Zheltovodov, A. 2006 Some advances in research of shock wave turbulent boundary layer interactions. AIAA Paper 2006-496.Google Scholar
Zuo, F.Y., Wei, J.R., Hu, S.L. & Pirozzoli, S. 2022 Effects of wall temperature on hypersonic impinging shock-wave/turbulent-boundary-layer interactions. AIAA J. 60 (9), 51095122.CrossRefGoogle Scholar