Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T19:05:25.714Z Has data issue: false hasContentIssue false

Relaminarization effects in hypersonic flow on a three-dimensional expansion–compression geometry

Published online by Cambridge University Press:  22 April 2024

Anshuman Pandey*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87123, USA
Katya M. Casper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87123, USA
Steven J. Beresh
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87123, USA
*
Email address for correspondence: apandey@sandia.gov

Abstract

This experimental work explores the flow field around a three-dimensional expansion–compression geometry on a slender cone at Mach 8 using high-frequency pressure sensors, high-frame-rate schlieren, temperature-sensitive paint, shear-stress measurements and oil-flow visualizations. The $7^\circ$ cone geometry has a hyperbolic slice which acts as an expansion corner and suppresses the disturbances present in the upstream boundary layer. Downstream of the cone-slice corner, high-frequency boundary-layer disturbances attenuate in all cases. Under laminar conditions, second-mode instabilities from the cone diminish and lower-frequency second-mode waves develop on the slice at a frequency commensurate with the increased boundary layer thickness. For fully turbulent cases, the boundary layer over the slice shows evidence of a two-layered nature with a turbulent outer region and a near-wall region with strong attenuation of high-frequency disturbances and reappearance of lower-frequency instability waves. When a downstream compression ramp is added to the slice, the expanded boundary layer shows enhanced susceptibility to separation such that separation is observed at a $10^{\circ }$ deflection, which is smaller than expected for turbulent conditions. For a $30^{\circ }$ ramp, boundary-layer separation occurs further upstream where the heat flux contours show a decrease in heating that is characteristic of a transitional separation. These results demonstrate the effect of relaminarization caused by an upstream expansion on a subsequent shock-wave/boundary-layer interaction.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnal, D. & Delery, J. 2004 Laminar-turbulent transition and shock wave/boundary layer interaction. In RTO-EN-AVT-116 in Critical Technologies for Hypersonic Vehicle Development, pp. 1–46. NATO Research and Technology Organization.Google Scholar
Arnette, S.A., Samimy, M. & Elliott, G.S. 1995 Structure of supersonic turbulent boundary layer after expansion regions. AIAA J. 33 (3), 430438.Google Scholar
Arnette, S.A., Samimy, M. & Elliott, G.S. 1998 The effects of expansion on the turbulence structure of compressible boundary layers. J. Fluid Mech. 367, 67105.CrossRefGoogle Scholar
Babinsky, H. & Harvey, J.K. 2011 Shock Wave-Boundary-Layer Interactions, 1st edn. Cambridge University Press.CrossRefGoogle Scholar
Barter, J.W. & Dolling, D.S. 1995 Reduction of fluctuating pressure loads in shock/boundary-layer interactions using vortex generators. AIAA J. 33 (10), 18421849.CrossRefGoogle Scholar
Benay, R., Chanetz, B., Mangin, B., Vandomme, L. & Perraud, J. 2006 Shock wave/transitional boundary-layer interactions in hypersonic flow. AIAA J. 44 (6), 12431254.CrossRefGoogle Scholar
Benitez, E.K., Borg, M.P., Paredes, P., Schneider, S.P. & Jewell, J.S. 2023 a Measurements of an axisymmetric hypersonic shear-layer instability on a cone-cylinder-flare in quiet flow. Phys. Rev. Fluids 8, 083903.CrossRefGoogle Scholar
Benitez, E.K., Borg, M.P., Scholten, A., Paredes, P., McDaniel, Z. & Jewell, J.S. 2023 b Instability and transition onset downstream of a laminar separation bubble at Mach 6. J. Fluid Mech. 969, A11.CrossRefGoogle Scholar
Beresh, S.J., Casper, K.M., Wagner, J.L., Henfling, J.F., Spillers, R.W. & Pruett, B.O.M. 2015 Modernization of Sandia's hypersonic wind tunnel. AIAA Paper 2015-1338.CrossRefGoogle Scholar
Beresh, S.J., Clemens, N.T. & Dolling, D.S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40 (12), 24122422.CrossRefGoogle Scholar
Beresh, S.J., Henfling, J.F., Spillers, R.W. & Pruett, B.O.M. 2011 Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer. Phys. Fluids 23, 075110.CrossRefGoogle Scholar
Blake, W.K. 2017 Mechanics of Flow-Induced Sound and Vibration, vol. 2. Academic.Google Scholar
Bourassa, C. & Thomas, F.O. 2009 An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359404.CrossRefGoogle Scholar
Bradshaw, P. 1973 Effects of streamline curvature on turbulence. AGARD-AG-169. Advisory Group for Aerospace Research & Development, NATO.Google Scholar
Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Butler, C.S. & Laurence, S.J. 2021 Interaction of second-mode wave packets with an axisymmetric expansion corner. Exp. Fluids 62, 140.CrossRefGoogle Scholar
Casper, K.M., Beresh, S.J., Henfling, J.F., Spillers, R.W., Pruett, B.O.M. & Schneider, S.P. 2016 Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone. AIAA J. 54 (4), 12501263.CrossRefGoogle Scholar
Casper, K.M., Beresh, S.J. & Schneider, S.P. 2014 Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer. J. Fluid Mech. 756, 10581091.CrossRefGoogle Scholar
Chapman, D.R., Kuehn, D.M. & Larson, H.K. 1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA-TR-1356, pp. 419–460.Google Scholar
Chapman, D.R. & Rubesin, M.W. 1949 Temperature and velocity profiles in the compressible laminar boundary layer with arbitrary distribution of surface temperature. J. Aeronaut. Sci. 16 (9), 547565.CrossRefGoogle Scholar
Chew, Y.T. 1979 Shockwave and boundary layer interaction in the presence of an expansion corner. Aeronaut. Q. 30 (3), 506527.CrossRefGoogle Scholar
Chuvakhov, P.V., Egorov, I.V., Ilyukhin, I.M., Obraz, A.O. & Fedorov, A.V. 2021 Boundary-layer instabilities in supersonic expansion corner flows. AIAA J. 59 (9), 33983405.CrossRefGoogle Scholar
Clemens, N.T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46 (1), 469492.CrossRefGoogle Scholar
Corcos, G.M. 1963 Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35 (2), 192199.CrossRefGoogle Scholar
Dawson, J.A., Samimy, M. & Amette, S.A. 1994 Effects of expansions on a supersonic boundary layer: surface pressure measurements. AIAA J. 32 (11), 21692177.CrossRefGoogle Scholar
Delery, J.M. 1985 Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22 (4), 209280.CrossRefGoogle Scholar
Dennis, D.H. 1957 The effects of boundary-layer separation over bodies of revolution with conical tail flares. NACA RM A57130, pp. 1–35.Google Scholar
Dolling, D.S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
van Driest, E.R. 1956 The problem of aerodynamic heating. Aeronaut. Engng Rev. 15 (10), 2641.Google Scholar
Duan, L., Choudhari, M.M. & Zhang, C. 2016 Pressure fluctuations induced by a hypersonic turbulent boundary layer. J. Fluid Mech. 804, 578607.CrossRefGoogle ScholarPubMed
Dussauge, J.P. 1987 The rapid expansion of a supersonic turbulent flow: role of bulk dilatation. J. Fluid Mech. 174, 81112.CrossRefGoogle Scholar
Fang, J., Yao, Y., Zheltovodov, A.A., Li, Z. & Lu, L. 2015 Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Phys. Fluids 27, 125104.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43 (1), 7995.CrossRefGoogle Scholar
Francis, A.A., Dylewicz, K., Klothakis, A., Theofilis, V. & Jewell, J.S. 2024 Instability measurements on a cone-slice-flap in Mach-6 quiet flow. AIAA Paper 2024-0500.CrossRefGoogle Scholar
Fujii, K. 2006 Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rockets 43 (4), 731738.CrossRefGoogle Scholar
Gaitonde, D.V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.CrossRefGoogle Scholar
Gaitonde, D.V. & Adler, M.C. 2023 Dynamics of three-dimensional shock-wave/boundary-layer interactions. Annu. Rev. Fluid Mech. 55 (1), 291321.CrossRefGoogle Scholar
Goldfeld, M.A. & Lisenkov, I.G. 1991 Effect of Reynolds number on boundary layer development behind an expansion fan. Fluid Dyn. 26 (5), 670676.CrossRefGoogle Scholar
Goldfeld, M.A., Nestoulia, R.V. & Shiplyuk, A.N. 2002 Relaminarization of a turbulent boundary layer with a Mach number 4. J. Appl. Mech. Tech. Phys. 43 (1), 7682.CrossRefGoogle Scholar
Gray, J.D. 1967 Investigation of the effect of flare and ramp angle on the upstream influence of laminar and transitional reattaching flows from Mach 3 to 7. AEDC-TR-66-190. Arnold Engineering Development Center, Tennessee, USA.CrossRefGoogle Scholar
Hayakawa, K. & Squire, L.C. 1982 The effect of the upstream boundary-layer state on the shock interaction at a compression corner. J. Fluid Mech. 122, 369394.CrossRefGoogle Scholar
Holden, M. 1977 Shock wave-turbulent boundary layer interaction in hypersonic flow. AIAA Paper 1977-0045.CrossRefGoogle Scholar
Huang, J., Duan, L., Casper, K.M., Wagnild, R.M. & Bitter, N.P. 2024 Transducer resolution effect on pressure fluctuations beneath hypersonic turbulent boundary layers. AIAA J. 62 (3), 882895.CrossRefGoogle Scholar
Huo, J., Yi, S., Zheng, W., Niu, H., Lu, X. & Gang, D. 2022 Experimental investigation of expansion effect on shock wave boundary layer interaction near a compression ramp. Chin. J. Aeronaut. 35 (12), 89101.CrossRefGoogle Scholar
Juliano, T.J., Borg, M.P. & Schneider, S.P. 2015 Quiet tunnel measurements of HIFiRE-5 boundary-layer transition. AIAA J. 53 (4), 832846.CrossRefGoogle Scholar
Katzer, E. 1989 On the lengthscales of laminar shock/boundary-layer interaction. J. Fluid Mech. 206, 477496.CrossRefGoogle Scholar
Knight, D., Yan, H., Panaras, A.G. & Zheltovodov, A. 2003 Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog. Aerosp. Sci. 39 (2–3), 121184.CrossRefGoogle Scholar
Lawson, J.M., Neet, M.C., Grossman, I.J. & Austin, J.M. 2020 Static and dynamic characterization of a focused laser differential interferometer. Exp. Fluids 61, 187.CrossRefGoogle Scholar
Leyva, I.A. 2017 The relentless pursuit of hypersonic flight. Phys. Today 70 (11), 3036.CrossRefGoogle Scholar
Liu, T. & Sullivan, J.P. 2005 Pressure and Temperature Sensitive Paints. Springer.Google Scholar
Liu, T., Ward, C.A.C., Rubal, J., Sullivan, J.P. & Schneider, S.P. 2013 Heat-flux measurements with temperature-sensitive paint in a Mach-6 quiet tunnel. J. Spacecr. Rockets 50 (2), 282293.CrossRefGoogle Scholar
Lu, F.K. & Chung, K.M. 1992 Downstream influence scaling of turbulent flow past expansion corners. AIAA J. 30 (12), 29762997.CrossRefGoogle Scholar
Mack, L.M. 1984 Boundary layer linear stability theory. AGARD Report No. 709 (3), 1–150.Google Scholar
Marineau, E.C., Grossir, G., Wagner, A., Leinemann, M., Radespiel, R., Tanno, H., Chynoweth, B.C., Schneider, S.P., Wagnild, R.M. & Casper, K.M. 2019 Analysis of second-mode amplitudes on sharp cones in hypersonic wind tunnels. J. Spacecr. Rockets 56 (2), 307318.CrossRefGoogle Scholar
Martellucci, A. & Weinberg, S. 1982 MAT program test summary report. Biconic body with slice/flap. BMO-TR-82-28. Air Force Ballistic Missile Office, California, USA.CrossRefGoogle Scholar
Massobrio, F., Viotto, R., Serpico, M., Sansone, A., Caporicci, M. & Muylaert, J.M. 2007 EXPERT: an atmospheric re-entry test-bed. Acta Astronaut. 60 (12), 974985.CrossRefGoogle Scholar
McKiernan, G.R. & Schneider, S.P. 2021 Instability and transition on a cone with a slice and ramp at Mach 6. AIAA Paper 2021-0249.CrossRefGoogle Scholar
Meritt, R.J. & Schetz, J.A. 2016 Skin friction sensor development, validation, and application for high-speed, high-enthalpy flow conditions. J. Propul. Power 32 (4), 821833.CrossRefGoogle Scholar
Meritt, R.J., Schetz, J.A., Marineau, E.C., Lewis, D.R. & Daniel, D.T. 2017 Direct skin friction measurements at Mach 10 in a hypervelocity wind tunnel. J. Spacecr. Rockets 54 (4), 871882.CrossRefGoogle Scholar
Murphree, Z.R., Combs, C.S., Yu, W.M., Dolling, D.S. & Clemens, N.T. 2021 Physics of unsteady cylinder-induced shock-wave/transitional boundary-layer interactions. J. Fluid Mech. 918, A39.CrossRefGoogle Scholar
Narasimha, R. & Sreenivasan, K.R. 1973 Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61 (3), 417447.CrossRefGoogle Scholar
Narasimha, R. & Viswanath, P.R. 1975 Reverse transition at an expansion corner in supersonic flow. AIAA J. 13 (5), 693695.CrossRefGoogle Scholar
Nguyen, T., Behr, M., Reinartz, B., Hohn, O. & Gülhan, A. 2013 Effects of sidewall compression and relaminarization in a scramjet inlet. J. Propul. Power 29 (3), 628638.CrossRefGoogle Scholar
Nicholson, G.L., Huang, J., Duan, L., Choudhari, M.M. & Bowersox, R.D.W. 2021 Simulation and modeling of hypersonic turbulent boundary layers subject to favorable pressure gradients due to streamline curvature. AIAA Paper 2021-1672.CrossRefGoogle Scholar
Nicotra, E., Moy, C.J., Ritchie, D., Zhou, T., Bane, S.P. & Jewell, J.S. 2024 Plasma perturbations on an Oberkampf geometry in quiet Mach 6 flow. AIAA Paper 2024-1519.CrossRefGoogle Scholar
Oberkampf, W.L., Aeschliman, D.P., Henfling, J.F. & Larson, D.E. 1995 Surface pressure measurements for CFD code validation in hypersonic flow. AIAA Paper 1995-2273.CrossRefGoogle Scholar
Oberkampf, W.L. & Aeschliman, D.P. 1992 Joint computational/experimental aerodynamics research on a hypersonic vehicle. Part 1: experimental results. AIAA J. 30 (8), 20002009.CrossRefGoogle Scholar
Ort, D.J. & Dosch, J.J. 2019 Influence of mounting on the accuracy of piezoelectric pressure measurements for hypersonic boundary layer transition. AIAA Paper 2019-2292.CrossRefGoogle Scholar
Panaras, A.G. 1996 Review of the physics of swept-shock/boundary layer interactions. Prog. Aerosp. Sci. 32 (2), 173244.CrossRefGoogle Scholar
Pandey, A., Casper, K.M., Guildenbecher, D.R., Beresh, S.J., Bhakta, R., Dezetter, M.E. & Spillers, R. 2022 Instability measurements in hypersonic flow on a three-dimensional cone-slice-ramp geometry. AIAA Paper 2022-1578.CrossRefGoogle Scholar
Pandey, A., Casper, K.M., Soehnel, M., Spillers, R., Bhakta, R. & Beresh, S.J. 2021 Hypersonic fluid-structure interaction on the control surface of a slender cone. AIAA Paper 2021-0909.CrossRefGoogle Scholar
Pandey, A., Casper, K.M., Spillers, R., Soehnel, M. & Spitzer, S. 2020 Hypersonic shock wave–boundary-layer interaction on the control surface of a slender cone. AIAA Paper 2020-0815.Google Scholar
Pandey, A., Jirasek, A., Saltzman, A.J., Casper, K.M., Beresh, S.J., Bhakta, R., Denk, B., De Zetter, M. & Spillers, R. 2023 Relaminarization effects on a three-dimensional cone-slice-ramp geometry at Mach 8. AIAA Paper 2023-0269.CrossRefGoogle Scholar
Paredes, P., Scholten, A., Choudhari, M.M., Li, F., Benitez, E.K. & Jewell, J.S. 2022 Boundary-layer instabilities over a cone–cylinder–flare model at Mach 6. AIAA J. 60 (10), 56525661.CrossRefGoogle Scholar
Parziale, N.J., Shepherd, J.E. & Hornung, H.G. 2013 Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. 51 (3), 750753.CrossRefGoogle Scholar
Pezzella, G., Marino, G. & Rufolo, G.C. 2014 Aerodynamic database development of the ESA intermediate experimental vehicle. Acta Astronaut. 94 (1), 5772.CrossRefGoogle Scholar
Quintanilha, H. & Theofilis, V. 2021 Steady laminar solutions of hypersonic flow over Oberkampf bodies at cruise. AIAA Paper 2021-0632.CrossRefGoogle Scholar
Ranjan, R. & Narasimha, R. 2017 An assessment of the two-layer quasi-laminar theory of relaminarization through recent high-Re accelerated turbulent boundary layer experiments. Trans. ASME J. Fluids Engng 139 (11), 111205.CrossRefGoogle Scholar
Rumsey, C.L. & Spalart, P.R. 2009 Turbulence model behavior in low Reynolds number regions of aerodynamic flowfields. AIAA J. 47 (4), 982993.CrossRefGoogle Scholar
Sadagopan, A. & Huang, D. 2024 Reduced-order modeling for fluid-thermal-structural interaction of cone-slice-ramp in high-speed flows. AIAA Paper 2024-1050.CrossRefGoogle Scholar
Sadagopan, A., Huang, D., Jirasek, A., Seidel, J., Pandey, A. & Casper, K.M. 2023 Hypersonic fluid–thermal–structural interaction of cone–slice–ramp: computations with experimental validation. AIAA J. 61 (11), 47524771.CrossRefGoogle Scholar
Saltzman, A.J., Pandey, A., Beresh, S.J., Casper, K.M., Bhakta, R., Denk, B., De Zetter, M. & Spillers, R. 2023 CO2-enhanced filtered Rayleigh scattering for study of a hypersonic cone-slice-ramp geometry. AIAA Paper 2023-1371.CrossRefGoogle Scholar
Sandham, N.D., Schülein, E., Wagner, A., Willems, S. & Steelant, J. 2014 Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349382.CrossRefGoogle Scholar
Schaefer, J.W. & Ferguson, H. 1962 Investigation of separation and associated heat transfer and pressure distribution on cone-cylinder-flare configurations at Mach five. Am. Rocket Soc. J. 32 (5), 762770.Google Scholar
Schmidt, B.E. & Shepherd, J.E. 2015 Analysis of focused laser differential interferometry. Appl. Opt. 54 (28), 8459.CrossRefGoogle ScholarPubMed
Settles, G.S. 2001 Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, 1st edn. Springer.CrossRefGoogle Scholar
Smeets, G. 1972 Laser interferometer for high sensitivity measurements on transient phase objects. IEEE Trans. Aerosp. Elect. Syst. (), –.CrossRefGoogle Scholar
Smith, D.R. & Smits, A.J. 1991 The rapid expansion of a turbulent boundary layer in a supersonic flow. Theor. Comput. Fluid Dyn. 2 (5–6), 319328.CrossRefGoogle Scholar
Smits, A.J. & Dussauge, J.P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer.Google Scholar
Sreenivasan, K.R. 1982 Laminarescent, relaminarizing and retransitional flows. Acta Mechanica 44 (5), 148.CrossRefGoogle Scholar
Sternberg, J. 1954 The transition from a turbulent to laminar boundary layer. Ballistic Research Lab., Aberdeen, Report No. 906, pp. 1–104.Google Scholar
Stetson, K., Thompson, E., Donaldson, J. & Siler, L. 1983 Laminar boundary layer stability experiments on a cone at Mach 8. Part 1 – sharp cone. AIAA Paper 1983-1761.CrossRefGoogle Scholar
Stollery, J.L. & Bates, L. 1974 Turbulent hypersonic viscous interaction. J. Fluid Mech. 63 (1), 145156.CrossRefGoogle Scholar
Sullivan, J.P., et al. 2012 Quantitative global heat transfer in a Mach-6 quiet tunnel. NASA/CR-2012-217331. NASA.Google Scholar
Sun, M.-b., Hu, Z. & Sandham, N.D. 2017 Recovery of a supersonic turbulent boundary layer after an expansion corner. Phys. Fluids 29, 076103.CrossRefGoogle Scholar
Tan, J., Tu, J., Sun, X., Liu, F., Meng, L. & Yang, P. 2017 Numerical study of hypersonic shock-wave/laminar boundary-layer interactions of a typical lifting vehicle. AIAA Paper 2017-2280.Google Scholar
Taylor, G.I. & Maccoll, J.W. 1933 The air pressure on a cone moving at high speeds.—II. Proc. R. Soc. Lond. A 139 (838), 298311.Google Scholar
Teramoto, S., Sanada, H. & Okamoto, K. 2017 Dilatation effect in relaminarization of an accelerating supersonic turbulent boundary layer. AIAA J. 55 (4), 14691474.CrossRefGoogle Scholar
Terceros, M.J. & Araya, D.B. 2021 Influence of boundary layer transition on the aerodynamics of a sliced cone with ramp at Mach 6. AIAA Paper 2021-1852.CrossRefGoogle Scholar
Thome, J., Reinert, J.D., Dwivedi, A. & Candler, G.V. 2018 Computational study of high speed flow on a sliced cone-flap geometry. AIAA Paper 2018-3397.CrossRefGoogle Scholar
Tichenor, N.R., Humble, R.A. & Bowersox, R.D.W. 2013 Response of a hypersonic turbulent boundary layer to favourable pressure gradients. J. Fluid Mech. 722, 187213.CrossRefGoogle Scholar
Tong, F., Dong, S., Duan, J., Yuan, X. & Li, X. 2022 Effect of expansion on the wall heat flux in a supersonic turbulent boundary layer. Phys. Fluids 34, 105109.Google Scholar
Viswanath, P.R., Narasimha, R. & Prabhu, A. 1978 Visualization of relaminarizing flows. J. Indian Inst. Sci. 60 (3), 159165.Google Scholar
Vogel, E.A., Coder, J.G., Chynoweth, B.C. & Schneider, S.P. 2019 Experimental and computational results of a cone-slice-ramp geometry at Mach 6. AIAA Paper 2019-3593.CrossRefGoogle Scholar
Wadhams, T.P., Mundy, E., MacLean, M.G. & Holden, M.S. 2008 Ground test studies of the HIFiRE-1 transition experiment part 1: experimental results. J. Spacecr. Rockets 45 (6), 11341148.CrossRefGoogle Scholar
Walker, M. & Oberkampf, W. 1992 Joint computational experimental aerodynamics research on a hypersonic vehicle. II – computational results. AIAA J. 30 (8), 20102016.CrossRefGoogle Scholar
Walker, S.H. & Rodgers, F. 2005 Falcon hypersonic technology overview. AIAA Paper 2005-3253.CrossRefGoogle Scholar
Wang, Q.C., Wang, Z.G. & Zhao, Y.X. 2016 Structural responses of the supersonic turbulent boundary layer to expansions. Appl. Phys. Lett. 109, 124104.Google Scholar
Wang, Q.C., Wang, Z.G. & Zhao, Y.X. 2017 The impact of streamwise convex curvature on the supersonic turbulent boundary layer. Phys. Fluids 29, 116106.CrossRefGoogle Scholar
Wang, X., Wang, Z., Sun, M., Wang, Q. & Hu, Z. 2020 Effects of favorable pressure gradient on turbulence structures and statistics of a flat-plate supersonic turbulent boundary layer. Phys. Fluids 32, 025107.Google Scholar
Warnack, D. & Fernolz, H.H. 1998 The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 2. The boundary layer with relaminarization. J. Fluid Mech. 359, 357381.CrossRefGoogle Scholar
White, F.M. & Majdalani, J. 2022 Viscous Fluid Flow, 4th edn. McGraw-Hill.Google Scholar
White, L.M., West, T.K., Rhode, M.N., Rieken, E.F., Erb, A.J., Lampenfield, J.J. & Rodriguez, D.A. 2021 CFD validation study of a hypersonic cone-slice-flap configuration. AIAA Paper 2021-1074.CrossRefGoogle Scholar
Xie, Z., Xiao, Z., Wang, G. & Yang, Y. 2022 Direct numerical simulation of the effects of Reynolds number in Mach 2.9 flows over an expansion-compression corner. Phys. Fluids 34, 125129.CrossRefGoogle Scholar
Zheltovodov, A.A. & Knight, D.D. 2011 Ideal-gas shock wave-turbulent boundary-layer interactions in supersonic flows and their modeling: three-dimensional interactions. In Shock Wave-Boundary-Layer Interactions (ed. H. Babinsky & J.K. Harvey), pp. 202–258. Cambridge Aerospace Series, Cambridge University Press.CrossRefGoogle Scholar
Zheltovodov, A.A., Shilein, E.Kh. & Horstman, C.C. 1993 Development of separation in the region where a shock interacts with a turbulent boundary layer perturbed by rarefaction waves. J. Appl. Mech. Tech. Phys. 34 (3), 346354.CrossRefGoogle Scholar