Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-lkk24 Total loading time: 0.285 Render date: 2021-09-16T22:58:06.572Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On the causal behaviour of flow over an elastic wall

Published online by Cambridge University Press:  10 October 1999

R. J. LINGWOOD
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
N. PEAKE
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Abstract

In this paper we consider the causal response of the inviscid shear-layer flow over an elastic surface to excitation by a time-harmonic line force. In the case of uniform flow, Brazier-Smith & Scott (1984) and Crighton & Oswell (1991) have analysed the long-time limit of the response. They find that the system is absolutely unstable for sufficiently high flow speeds, and that at lower speeds there exist certain anomalous neutral modes with group velocity directed towards the driver (in contradiction of the usual radiation condition of out-going disturbances). Our aim in this paper is to repeat their analysis for more realistic shear profiles, and in particular to determine whether or not the uniform-flow results can be regained in the limit in which the shear-layer thickness on a length scale based on the fluid loading, denoted ε, becomes small. For a simple broken-line linear shear profile we find that the results are qualitatively similar to those for uniform flow. However, for the more realistic Blasius profile very significant differences arise, essentially due to the presence of the critical layer. In particular, we find that as ε → 0 the minimum flow speed required for absolute instability is pushed to considerably higher values than was found for uniform flow, leading us to conclude that the uniform-flow problem is an unattainable singular limit of our more general problem. In contrast, we find that the uniform-flow anomalous modes (written as exp (ikx − iωt), say) do persist for non-zero shear over a wide range of ε, although now becoming non-neutral. Unlike the case of uniform flow, however, the k-loci of these modes can now change direction more than once as the imaginary part of ω is increased, and we describe the connection between this behaviour and local properties of the dispersion function. Finally, in order to investigate whether or not these anomalous modes might be realizable at a finite time after the driver is switched on, we evaluate the double Fourier inversion integrals for the unsteady flow numerically. We find that the anomalous mode is indeed present at finite time, once initial transients have propagated away, not only for impulsive start-up but also when the forcing amplitude is allowed to grow slowly from a small value at some initial instant. This behaviour has significant implications for the application of standard radiation conditions in wave problems with mean flow.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the causal behaviour of flow over an elastic wall
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the causal behaviour of flow over an elastic wall
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the causal behaviour of flow over an elastic wall
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *