Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-27T16:55:07.507Z Has data issue: false hasContentIssue false

Non-universality and dissipative anomaly in compressible magnetohydrodynamic turbulence

Published online by Cambridge University Press:  27 August 2024

Cheng Li
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Yan Yang
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
William H. Matthaeus
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
Bin Jiang
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Minping Wan*
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Shiyi Chen
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, PR China
*
Email address for correspondence: wanmp@sustech.edu.cn

Abstract

We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate $\mathcal {C}_{\varepsilon }$ fits well with the model $\mathcal {C}_{\varepsilon } = \mathcal {C}_{\varepsilon,\infty } + \mathcal {D}/R_L^-$ for all levels of flow compressibility considered here, where $R_L^-$ is the generalized large-scale Reynolds number. The asymptotic value $\mathcal {C}_{\varepsilon,\infty }$ describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aluie, H. 2017 Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys. 19 (2), 025008.CrossRefGoogle Scholar
Andrés, N. & Sahraoui, F. 2017 Alternative derivation of exact law for compressible and isothermal magnetohydrodynamics turbulence. Phys. Rev. E 96 (5), 053205.CrossRefGoogle ScholarPubMed
Andrés, N., Sahraoui, F., Galtier, S., Hadid, L.Z., Dmitruk, P. & Mininni, P. 2018 Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. J. Plasma Phys. 84 (4), 905840404.CrossRefGoogle Scholar
Bandyopadhyay, R., Oughton, S., Wan, M., Matthaeus, W.H., Chhiber, R. & Parashar, T.N. 2018 Finite dissipation in anisotropic magnetohydrodynamic turbulence. Phys. Rev. X 8 (4), 041052.Google Scholar
Banerjee, S. & Galtier, S. 2013 Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E 87 (1), 013019.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1951 The invariant theory of isotropic turbulence in magneto-hydrodynamics. Proc. R. Soc. Lond. A 204 (1079), 435449.Google Scholar
Constantin, P., Weinan, E. & Titi, E.S. 1994 Onsager's conjecture on the energy conservation for solutions of Euler's equation. Commun. Math. Phys. 165 (1), 207209.CrossRefGoogle Scholar
Dallas, V. & Alexakis, A. 2014 The signature of initial conditions on magnetohydrodynamic turbulence. Astrophys. J. 788 (2), L36.CrossRefGoogle Scholar
Donzis, D.A. & John, J.P. 2020 Universality and scaling in homogeneous compressible turbulence. Phys. Rev. Fluids 5 (8), 084609.CrossRefGoogle Scholar
Duchon, J. & Robert, R. 2000 Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13 (1), 249255.CrossRefGoogle Scholar
Eyink, G.L. 1994 Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Physica D 78 (3–4), 222240.CrossRefGoogle Scholar
Eyink, G.L. & Drivas, T.D. 2018 Cascades and dissipative anomalies in compressible fluid turbulence. Phys. Rev. X 8 (1), 011022.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galtier, S. 2018 On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics. J. Phys. A 51 (20), 205501.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2009 The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys. Fluids 21 (3), 035104.CrossRefGoogle Scholar
Hadid, L.Z., Sahraoui, F., Galtier, S. & Huang, S.Y. 2018 Compressible magnetohydrodynamic turbulence in the Earth's magnetosheath: estimation of the energy cascade rate using in situ spacecraft data. Phys. Rev. Lett. 120 (5), 055102.CrossRefGoogle ScholarPubMed
Jiang, B., Li, C., Yang, Y., Zhou, K., Matthaeus, W.H. & Wan, M. 2023 Energy transfer and third-order law in forced anisotropic magneto-hydrodynamic turbulence with hyper-viscosity. J. Fluid Mech. 974, A20.CrossRefGoogle Scholar
John, J.P., Donzis, D.A. & Sreenivasan, K.R. 2021 Does dissipative anomaly hold for compressible turbulence? J. Fluid Mech. 920, A20.CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.CrossRefGoogle Scholar
de Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164 (917), 192215.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR. 32, 19–21.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In Dokl. Akad. Nauk SSSR, vol. 30, pp. 299–303.Google Scholar
Kolmogorov, A.N. 1941 c On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. In Dokl. Akad. Nauk SSSR, vol. 31, pp. 538–540.Google Scholar
Linkmann, M.F., Berera, A. & Goldstraw, E.E. 2017 Reynolds-number dependence of the dimensionless dissipation rate in homogeneous magnetohydrodynamic turbulence. Phys. Rev. E 95 (1), 013102.CrossRefGoogle ScholarPubMed
Linkmann, M.F., Berera, A., McComb, W.D. & McKay, M.E. 2015 Nonuniversality and finite dissipation in decaying magnetohydrodynamic turbulence. Phys. Rev. Lett. 114 (23), 235001.CrossRefGoogle ScholarPubMed
Marino, R., Feraco, F., Primavera, L., Pumir, A., Pouquet, A., Rosenberg, D. & Mininni, P.D. 2022 Turbulence generation by large-scale extreme vertical drafts and the modulation of local energy dissipation in stably stratified geophysical flows. Phys. Rev. Fluids 7 (3), 033801.CrossRefGoogle Scholar
Marino, R. & Sorriso-Valvo, L. 2023 Scaling laws for the energy transfer in space plasma turbulence. Phys. Rep. 1006, 1144.CrossRefGoogle Scholar
Mazellier, N. & Vassilicos, J.C. 2008 The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20 (1), 015101.CrossRefGoogle Scholar
McComb, W.D., Berera, A., Yoffe, S.R. & Linkmann, M.F. 2015 Energy transfer and dissipation in forced isotropic turbulence. Phys. Rev. E 91 (4), 043013.CrossRefGoogle ScholarPubMed
Mininni, P.D. & Pouquet, A. 2009 Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E 80 (2), 025401.CrossRefGoogle ScholarPubMed
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6 (S2), 279287.CrossRefGoogle Scholar
Pearson, B. & Fox-Kemper, B. 2018 Log-normal turbulence dissipation in global ocean models. Phys. Rev. Lett. 120, 094501.CrossRefGoogle ScholarPubMed
Pearson, B.R., Yousef, T.A., Haugen, N.E.L., Brandenburg, A. & Krogstad, P.-Å. 2004 Delayed correlation between turbulent energy injection and dissipation. Phys. Rev. E 70 (5), 056301.CrossRefGoogle ScholarPubMed
Politano, H. & Pouquet, A. 1998 Von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57 (1), R21R24.CrossRefGoogle Scholar
Pouquet, A., Rosenberg, D. & Marino, R. 2019 Linking dissipation, anisotropy, and intermittency in rotating stratified turbulence at the threshold of linear shear instabilities. Phys. Fluids 31 (10), 105116.CrossRefGoogle Scholar
Simon, P. & Sahraoui, F. 2021 General exact law of compressible isentropic magnetohydrodynamic flows: theory and spacecraft observations in the solar wind. Astrophys. J. 916 (1), 49.CrossRefGoogle Scholar
Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B. & Pietropaolo, E. 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99 (11), 115001.CrossRefGoogle ScholarPubMed
Sreenivasan, K.R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27 (5), 1048.CrossRefGoogle Scholar
Sreenivasan, K.R. 1998 An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10 (2), 528529.CrossRefGoogle Scholar
Taylor, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 421444.CrossRefGoogle Scholar
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.CrossRefGoogle Scholar
Wan, M., Matthaeus, W.H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Loring, B. & Chapman, S.C. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109 (19), 195001.CrossRefGoogle ScholarPubMed
Wan, M., Matthaeus, W.H., Roytershteyn, V., Parashar, T.N., Wu, P. & Karimabadi, H. 2016 Intermittency, coherent structures and dissipation in plasma turbulence. Phys. Plasmas 23 (4), 042307.CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L.-P., Xiao, Z., He, X.T. & Chen, S. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.CrossRefGoogle Scholar
Wang, J., Wang, L.-P., Xiao, Z., Shi, Y. & Chen, S. 2010 A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys. 229 (13), 52575279.CrossRefGoogle Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.CrossRefGoogle ScholarPubMed
Yang, Y., Matthaeus, W.H., Roy, S., Roytershteyn, V., Parashar, T.N., Bandyopadhyay, R. & Wan, M. 2022 Pressure–strain interaction as the energy dissipation estimate in collisionless plasma. Astrophys. J. 929 (2), 142.CrossRefGoogle Scholar
Yang, Y., Matthaeus, W.H., Shi, Y., Wan, M. & Chen, S. 2017 Compressibility effect on coherent structures, energy transfer, and scaling in magnetohydrodynamic turbulence. Phys. Fluids 29 (3), 035105.CrossRefGoogle Scholar
Yang, Y., Shi, Y., Wan, M., Matthaeus, W.H. & Chen, S. 2016 a Energy cascade and its locality in compressible magnetohydrodynamic turbulence. Phys. Rev. E 93 (6), 061102.CrossRefGoogle ScholarPubMed
Yang, Y., Wan, M., Matthaeus, W.H. & Chen, S. 2021 Energy budget in decaying compressible MHD turbulence. J. Fluid Mech. 916, A4.CrossRefGoogle Scholar
Yang, Y., Wan, M., Shi, Y., Yang, K. & Chen, S. 2016 b A hybrid scheme for compressible magnetohydrodynamic turbulence. J. Comput. Phys. 306, 7391.CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material
Download Li et al. supplementary material(File)
File 1 MB