Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.171 Render date: 2021-10-17T05:37:37.124Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Moderate-Reynolds-number flows in ordered and random arrays of spheres

Published online by Cambridge University Press:  26 November 2001

REGHAN J. HILL
Affiliation:
School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA
DONALD L. KOCH
Affiliation:
School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA
ANTHONY J. C. LADD
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

Lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at moderate Reynolds numbers, on flows in simple cubic, face-centred cubic and random arrays of spheres. The drag force on the spheres, and hence the permeability of the arrays, is calculated as a function of the Reynolds number at solid volume fractions up to the close-packed limits of the arrays. At Reynolds numbers up to O(102), the non-dimensional drag force has a more complex dependence on the Reynolds number and the solid volume fraction than suggested by the well-known Ergun correlation, particularly at solid volume fractions smaller than those that can be achieved in physical experiments. However, good agreement is found between the simulations and Ergun's correlation at solid volume fractions approaching the close-packed limit. For ordered arrays, the drag force is further complicated by its dependence on the direction of the flow relative to the axes of the arrays, even though in the absence of fluid inertia the permeability is isotropic. Visualizations of the flows are used to help interpret the numerical results. For random arrays, the transition to unsteady flow and the effect of moderate Reynolds numbers on hydrodynamic dispersion are discussed.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
298
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Moderate-Reynolds-number flows in ordered and random arrays of spheres
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Moderate-Reynolds-number flows in ordered and random arrays of spheres
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Moderate-Reynolds-number flows in ordered and random arrays of spheres
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *