Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dkhcg Total loading time: 0.225 Render date: 2021-06-16T12:25:00.002Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The influence of harmonic wall motion on transitional boundary layers

Published online by Cambridge University Press:  03 November 2014

M. J. Philipp Hack
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
Tamer A. Zaki
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
Corresponding
E-mail address:

Abstract

The influence of harmonic spanwise wall motion on bypass transition in boundary layers is investigated using direct numerical simulations. It is shown that the appropriate choice of the forcing parameters can achieve a substantial stabilization of the laminar flow regime. However, an increase of the forcing amplitude or period beyond their optimal values diminishes the stabilizing effect, and leads to breakdown upstream of the unforced case. For the optimal wall-oscillation parameters, the reduction in propulsion power substantially outweighs the power requirement of the forcing. The mechanism of transition delay is examined in detail. Analysis of the pre-transitional streaks shows that the wall oscillation substantially reduces their average amplitude, and eliminates the most energetic streaks. As a result, the secondary instabilities that precede breakdown to turbulence are substantially weakened – an effect demonstrated by linear stability analyses of flow fields from direct numerical simulations. The outcome is transition delay owing to a significant reduction in the frequency of occurrence of turbulent spots and a downstream shift in their average inception location. Finally, it is shown that the efficiency of the forcing can be further improved by replacing the sinusoidal time dependence of the wall oscillation with a square wave.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Arnal, D. & Michel, R. 1990 Laminar–Turbulent Transition, Vol. III. Springer.CrossRefGoogle Scholar
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14351458.CrossRefGoogle Scholar
Baron, A. & Quadrio, M. 1996 Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311326.CrossRefGoogle Scholar
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197, 759778.CrossRefGoogle Scholar
Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J. Fluid Mech. 281, 219245.CrossRefGoogle Scholar
Bowles, R. G. A. & Smith, F. T. 1995 Short-scale effects on model boundary-layer spots. J. Fluid Mech. 295, 395407.CrossRefGoogle Scholar
Bradshaw, P. & Pontikos, N. S. 1985 Measurements in the turbulent boundary layer on an ‘infinite’ swept wing. J. Fluid Mech. 159, 105130.CrossRefGoogle Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Breuer, K. S. & Haritonidis, J. H. 1990 The evolution of a localized disturbance in a laminar boundary layer. Part 1. Weak disturbances. J. Fluid Mech. 220, 569594.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.CrossRefGoogle Scholar
Choi, K.-S. 2002 Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14 (7), 25302542.CrossRefGoogle Scholar
Chong, T. P. & Zhong, S. 2005 On the three-dimensional structure of turbulent spots. Trans. ASME: J. Turbomach. 127, 545551.Google Scholar
Cimarelli, A., Frohnapfel, B., Hasegawa, Y., De Angelis, E. & Quadrio, M. 2013 Prediction of turbulence control for arbitrary periodic spanwise wall movement. Phys. Fluids 25, 075102.CrossRefGoogle Scholar
Cossu, C. & Brandt, L. 2004 On Tollmien–Schlichting-like waves in streaky boundary layers. Eur. J. Mech. (B/Fluids) 23, 815833.CrossRefGoogle Scholar
Dong, M. & Wu, X. 2013 On continuous spectra of the Orr–Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances. J. Fluid Mech. 732, 616659.CrossRefGoogle Scholar
Driver, D. M. & Hebbar, S. K. 1987 Experimental study of a three-dimensional, shear-driven, turbulent boundary layer. AIAA J. 25 (1), 3542.CrossRefGoogle Scholar
Dryden, H. L.1936 Air flow in the boundary layer near a plate. NACA Report No. 562. National Advisory Committee for Aeronautics.Google Scholar
Duchmann, A., Grundmann, S. & Tropea, C. 2013 Delay of natural transition with dielectric barrier discharges. Exp. Fluids 54, 1461.CrossRefGoogle Scholar
Durbin, P. A. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39, 107128.CrossRefGoogle Scholar
Emmons, H. W. 1951 The laminar–turbulent transition in a boundary layer: part I. J. Aeronaut. Sci. 18 (7), 490498.CrossRefGoogle Scholar
Fransson, J. H. M. & Alfredsson, P. H. 2003 On the disturbance growth in an asymptotic suction boundary layer. J. Fluid Mech. 482, 5190.CrossRefGoogle Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2005 Experimental study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17, 054110.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2012 The continuous spectrum of time-harmonic shear layers. Phys. Fluids 24 (3), 034101.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.CrossRefGoogle Scholar
Hanson, R. E., Bade, K. M., Belson, B. A., Lavoie, P., Naguib, A. M. & Rowley, C. W. 2014 Feedback control of slowly-varying transient growth by an array of plasma actuators. Phys. Fluids 26, 024102.CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.CrossRefGoogle Scholar
Huang, J.-C. & Johnson, M. W. 2007 The influence of compliant surfaces on bypass transition. Exp. Fluids 42, 711718.CrossRefGoogle Scholar
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.CrossRefGoogle Scholar
Hunt, J. C. R. & Durbin, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24, 375404.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 1998 Shear sheltering and the continuous spectrum of the Orr–Sommerfeld equation. Phys. Fluids 10 (8), 20062011.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Jung, W. J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.CrossRefGoogle Scholar
Karniadakis, G. E. & Choi, K.-S. 2003 Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 4562.CrossRefGoogle Scholar
Kendall, J.1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak freestream turbulence. AIAA Paper 85-1695.Google Scholar
Kerschen, E. J. 1991 Linear and nonlinear receptivity to vortical free-stream disturbances. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D., Reed, H. & Kobayashi, R.), ASME Fluid Engineering Division Conference, vol. 114, p. 43. ASME.Google Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Klebanoff, P. S. 1971 Effect of freestream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 16, 13231334.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12 (1), 134.CrossRefGoogle Scholar
Kleiser, L. & Zang, T. A. 1991 Numerical simulation of transition in wall-bounded shear flows. Annu. Rev. Fluid Mech. 23, 495537.CrossRefGoogle Scholar
Kurian, T. & Fransson, J. H. M. 2009 Grid-generated turbulence revisted. Fluid Dyn. Res. 41, 021403.CrossRefGoogle Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Lardeau, S. & Leschziner, M. A. 2013 The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25, 075109.CrossRefGoogle Scholar
Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.CrossRefGoogle Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008a Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 193233.CrossRefGoogle Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008b Floquet analysis of secondary instability of boundary layers distorted by Klebanoff streaks and Tollmien–Schlichting waves. Phys. Fluids 20, 124102.CrossRefGoogle Scholar
Malik, S. V. & Hooper, A. P. 2005 Linear stability and energy growth of viscosity stratified flows. Phys. Fluids 17, 024101.CrossRefGoogle Scholar
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech. 660, 114146.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.CrossRefGoogle Scholar
Moin, P., Shih, T.-H., Driver, D. & Mansour, N. N. 1990 Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids 2 (10), 18461853.CrossRefGoogle Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2007 Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471504.CrossRefGoogle Scholar
Nolan, K. P. & Zaki, T. A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.CrossRefGoogle Scholar
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.CrossRefGoogle Scholar
Phillips, O. M. 1969 Shear-flow turbulence. Annu. Rev. Fluid Mech. 1, 245264.CrossRefGoogle Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.CrossRefGoogle Scholar
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.CrossRefGoogle Scholar
Ricco, P. 2011 Laminar streaks with spanwise wall forcing. Phys. Fluids 22, 064103.Google Scholar
Roach, P. & Brierley, B. 1990 The influence of a turbulent freestream on zero pressure gradient transitional boundary layer development, Part I: Test cases T3A and T3B. In ERCOFTAC Workshop: Numerical Simulation of Unsteady Flows and Transition to Turbulence, Lausanne, Switzerland, pp. 319347. Cambridge University Press.Google Scholar
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94, 102137.CrossRefGoogle Scholar
Sameen, A. & Govindarajan, R. 2007 The effect of wall heating on instability of channel flow. J. Fluid Mech. 577, 417442.CrossRefGoogle Scholar
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.CrossRefGoogle Scholar
Schrader, L.-U., Brandt, L. & Henningson, D. S. 2009 Receptivity mechanisms in three-dimensional boundary-layer flows. J. Fluid Mech. 618, 209241.CrossRefGoogle Scholar
Schrader, L.-U., Subir, A. & Brandt, L. 2010 Transition to turbulence in the boundary layer over a smooth and rough swept plate exposed to free-stream turbulence. J. Fluid Mech. 646, 297325.CrossRefGoogle Scholar
Sorensen, D. C. 1992 Implicit application of polynomial filters in a $k$ -step Arnoldi method. SIAM J. Matrix Anal. Applics. 13 (1), 357385.CrossRefGoogle Scholar
Spalart, P. R. 1989 Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech. 205, 319340.CrossRefGoogle Scholar
Suder, K. L., O’Brien, J. E. & Reshotko, E.1981 Experimental study of bypass transition in a boundary layer. NASA Rep. TM-100913. National Aeronautics and Space Administration.Google Scholar
Taylor, G. I. 1939 Some recent developments in the study of turbulence. In Proceedings of the 5th International Congress for Applied Mechanics (ed. Den Hartog, J. & Peters, H.), pp. 294310. Wiley.Google Scholar
Touber, E. & Leschziner, M. A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 507, 151.Google Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.CrossRefGoogle Scholar
Viotti, C., Quadrio, M. & Luchini, P. 2009 Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. Fluids 21, 115109.CrossRefGoogle Scholar
White, F. M. 2005 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 On a turbulent ‘spot’ in a laminar boundary layer. J. Fluid Mech. 78, 785819.CrossRefGoogle Scholar
Zaki, T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451473.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T. A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111147.CrossRefGoogle Scholar
15
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The influence of harmonic wall motion on transitional boundary layers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The influence of harmonic wall motion on transitional boundary layers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The influence of harmonic wall motion on transitional boundary layers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *