Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T09:02:58.490Z Has data issue: false hasContentIssue false

Impact of surface viscosity on the stability of a droplet translating through a stagnant fluid

Published online by Cambridge University Press:  01 October 2021

Natasha Singh
Affiliation:
Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN47907, USA
Vivek Narsimhan*
Affiliation:
Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN47907, USA
*
Email address for correspondence: vnarsim@purdue.edu

Abstract

This study examines the impact of interfacial viscosity on the stability of an initially deformed droplet translating through an unbounded quiescent fluid. The boundary-integral formulation is employed to investigate the time evolution of a droplet in the Stokes flow limit. The droplet interface is modelled using the Boussinesq–Scriven constitutive relationship having surface shear viscosity $\eta _\mu$ and surface dilatational viscosity $\eta _\kappa$. We observe that, below a critical value of the capillary number, $Ca_C$, the initially perturbed droplet reverts to its spherical shape. Above $Ca_C$, the translating droplet deforms continuously, growing a tail at the rear end for initial prolate perturbations and a cavity for initial oblate perturbations. We find that surface shear viscosity inhibits the tail/cavity growth at the droplet's rear end and increases the $Ca_C$ compared with a clean droplet. In contrast, surface dilatational viscosity increases tail/cavity growth and lowers $Ca_C$ compared with a clean droplet. Surprisingly, both shear and dilatational surface viscosity appear to delay the time at which pinch off occurs, and hence satellite droplets form. Lastly, we explore the combined influence of surface viscosity and surfactant transport on droplet stability by assuming a linear dependence of surface tension on surfactant concentration and exponential dependence of interfacial viscosities on the surface pressure. We find that pressure-thinning/thickening effects significantly affect the droplet dynamics for surface shear viscosity but play a small role for surface dilatational viscosity. We lastly provide phase diagrams for the critical capillary number for different values of the droplet's viscosity ratio and initial Taylor deformation parameter.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borhan, A. & Mao, C.-F. 1992 Effect of surfactants on the motion of drops through circular tubes. Phys. Fluids A 4 (12), 26282640.CrossRefGoogle Scholar
Boussinesq, M.J. 1913 Sur l'existence d'une viscosité superficielle, dans la mince couche de transition séparant un liquide d'un autre fluide contigu. Ann. Chim. Phys. 29, 349357.Google Scholar
Brooks, C.F., Fuller, G.G., Frank, C.W. & Robertson, C.R. 1999 An interfacial stress rheometer to study rheological transitions in monolayers at the air- water interface. Langmuir 15 (7), 24502459.CrossRefGoogle Scholar
Carroll, R.M. & Gupta, N.R. 2014 Inertial and surfactant effects on the steady droplet flow in cylindrical channels. Phys. Fluids 26 (12), 122102.CrossRefGoogle Scholar
Choi, S.Q., Steltenkamp, S., Zasadzinski, J.A. & Squires, T.M. 2011 Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nat. Commun. 2 (1), 16.CrossRefGoogle ScholarPubMed
Dai, B. & Leal, L.G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20 (4), 040802.CrossRefGoogle Scholar
Dandekar, R. & Ardekani, A.M. 2020 Effect of interfacial viscosities on droplet migration at low surfactant concentrations. J. Fluid Mech. 902, A2.CrossRefGoogle Scholar
Danov, K., Aust, R., Durst, F. & Lange, U. 1995 Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large brownian particle. J. Colloid Interface Sci. 175 (1), 3645.CrossRefGoogle Scholar
Dehghani, N.L. & Narsimhan, V. 2019 The unsteady drag of a translating spherical drop with a viscoelastic membrane at small Reynolds number. J. Non-Newtonian Fluid Mech. 269, 8287.CrossRefGoogle Scholar
Erni, P. 2011 Deformation modes of complex fluid interfaces. Soft Matt. 7 (17), 75867600.CrossRefGoogle Scholar
Erni, P., Fischer, P., Windhab, E.J., Kusnezov, V., Stettin, H. & Läuger, J. 2003 Stress-and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev. Sci. Instrum. 74 (11), 49164924.CrossRefGoogle Scholar
Erni, P., Windhab, E.J. & Fischer, P. 2011 Emulsion drops with complex interfaces: globular versus flexible proteins. Macromol. Mater. Engng 296 (3–4), 249262.CrossRefGoogle Scholar
Freer, E.M., Yim, K.S., Fuller, G.G. & Radke, C.J. 2004 Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Langmuir 20 (23), 1015910167.CrossRefGoogle Scholar
Fuller, G.G. & Vermant, J. 2012 Complex fluid-fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Engng 3, 519543.CrossRefGoogle ScholarPubMed
Gounley, J., Boedec, G., Jaeger, M. & Leonetti, M. 2016 Influence of surface viscosity on droplets in shear flow. J. Fluid Mech. 791, 464494.CrossRefGoogle Scholar
Gunning, A.P., Kirby, A.R., Wilde, P.J., Penfold, R., Woodward, N.C. & Morris, V.J. 2013 Probing the role of interfacial rheology in the relaxation behaviour between deformable oil droplets using force spectroscopy. Soft Matt. 9 (48), 1147311479.CrossRefGoogle Scholar
Hermans, E. & Vermant, J. 2014 Interfacial shear rheology of dppc under physiologically relevant conditions. Soft Matt. 10 (1), 175186.CrossRefGoogle ScholarPubMed
Jaensson, N. & Vermant, J. 2018 Tensiometry and rheology of complex interfaces. Curr. Opin. Colloid Interface Sci. 37, 136150.CrossRefGoogle Scholar
Johnson, R.A. & Borhan, A. 2000 Stability of the shape of a surfactant-laden drop translating at low Reynolds number. Phys. Fluids 12 (4), 773784.CrossRefGoogle Scholar
Johnson, R.A. & Borhan, A. 2003 Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility. J. Colloid Interface Sci. 261 (2), 529541.CrossRefGoogle ScholarPubMed
Kim, K., Choi, S.Q., Zasadzinski, J.A. & Squires, T.M. 2011 Interfacial microrheology of dppc monolayers at the air–water interface. Soft Matt. 7 (17), 77827789.CrossRefGoogle Scholar
Kim, K., Choi, S.Q., Zell, Z.A., Squires, T.M. & Zasadzinski, J.A. 2013 Effect of cholesterol nanodomains on monolayer morphology and dynamics. Proc. Natl Acad. Sci. 110 (33), E3054E3060.CrossRefGoogle ScholarPubMed
Koh, C.J. & Leal, L.G. 1989 The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid. Phys. Fluids A 1 (8), 13091313.CrossRefGoogle Scholar
Koh, C.J. & Leal, L.G. 1990 An experimental investigation on the stability of viscous drops translating through a quiescent fluid. Phys. Fluids A 2 (12), 21032109.CrossRefGoogle Scholar
Krägel, J., Kretzschmar, G., Li, J.B., Loglio, G., Miller, R. & Möhwald, H. 1996 Surface rheology of monolayers. Thin Solid Films 284, 361364.CrossRefGoogle Scholar
Kurtz, R.E., Lange, A. & Fuller, G.G. 2006 Interfacial rheology and structure of straight-chain and branched fatty alcohol mixtures. Langmuir 22 (12), 53215327.CrossRefGoogle ScholarPubMed
Levan, M.D. 1981 Motion of a droplet with a newtonian interface. J. Colloid Interface Sci. 83 (1), 1117.CrossRefGoogle Scholar
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in stokes flow. J. Fluid Mech. 341, 165194.CrossRefGoogle Scholar
Lucassen-Reynders, E.H. 1993 Interfacial viscoelasticity in emulsions and foams. Food Struct. 12 (1), 1.Google Scholar
Luo, Z.Y., Shang, X.L. & Bai, B.F. 2019 Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow. J. Fluid Mech. 858, 91121.CrossRefGoogle Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2015 Effect of interfacial slip on the cross-stream migration of a drop in an unbounded poiseuille flow. Phys. Rev. E 92 (2), 023002.CrossRefGoogle Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016 The effect of uniform electric field on the cross-stream migration of a drop in plane poiseuille flow. J. Fluid Mech. 809, 726774.CrossRefGoogle Scholar
Manikantan, H. & Squires, T.M. 2017 Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows. Phys. Rev. Fluids 2 (2), 023301.CrossRefGoogle Scholar
Manor, O., Lavrenteva, O. & Nir, A. 2008 Effect of non-homogeneous surface viscosity on the marangoni migration of a droplet in viscous fluid. J. Colloid Interface Sci. 321 (1), 142153.CrossRefGoogle ScholarPubMed
Martinez, M.J. & Udell, K.S. 1990 Axisymmetric creeping motion of drops through circular tubes. J. Fluid Mech. 210, 565591.CrossRefGoogle Scholar
Miller, R., Ferri, J.K., Javadi, A., Krägel, J., Mucic, N. & Wüstneck, R. 2010 Rheology of interfacial layers. Colloid Polym. Sci. 288 (9), 937950.CrossRefGoogle Scholar
Narsimhan, V. 2018 The effect of surface viscosity on the translational speed of droplets. Phys. Fluids 30 (8), 081703.CrossRefGoogle Scholar
Narsimhan, V. 2019 Shape and rheology of droplets with viscous surface moduli. J. Fluid Mech. 862, 385420.CrossRefGoogle Scholar
Narsimhan, V. & Shaqfeh, E.S.G. 2010 Lateral drift and concentration instability in a suspension of bubbles induced by Marangoni stresses at zero Reynolds number. Phys. Fluids 22 (10), 101702.CrossRefGoogle Scholar
Palaparthi, R., Papageorgiou, D.T. & Maldarelli, C. 2006 Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles. J. Fluid Mech. 559, 144.CrossRefGoogle Scholar
Pawar, A.B., Caggioni, M., Ergun, R., Hartel, R.W. & Spicer, P.T. 2011 Arrested coalescence in pickering emulsions. Soft Matt. 7 (17), 77107716.CrossRefGoogle Scholar
Pawar, Y. & Stebe, K.J. 1996 Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8 (7), 17381751.CrossRefGoogle Scholar
Pozrikidis, C. 1990 The instability of a moving viscous drop. J. Fluid Mech. 210, 121.CrossRefGoogle Scholar
Pozrikidis, C. 1992 The buoyancy-driven motion of a train of viscous drops within a cylindrical tube. J. Fluid Mech. 237, 627648.CrossRefGoogle Scholar
Pozrikidis, C. 1994 Effects of surface viscosity on the finite deformation of a liquid drop and the rheology of dilute emulsions in simple shearing flow. J. Non-Newtonian Fluid Mech. 51 (2), 161178.CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.CrossRefGoogle Scholar
Pozrikidis, C., et al. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Samaniuk, J.R. & Vermant, J. 2014 Micro and macrorheology at fluid–fluid interfaces. Soft Matt. 10 (36), 70237033.CrossRefGoogle ScholarPubMed
Scriven, L.E. 1960 Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem. Engng Sci. 12 (2), 98108.CrossRefGoogle Scholar
Singh, N. & Narsimhan, V. 2020 Deformation and burst of a liquid droplet with viscous surface moduli in a linear flow field. Phys. Rev. Fluids 5 (6), 063601.CrossRefGoogle Scholar
Stone, H.A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.CrossRefGoogle Scholar
Stone, H.A. & Leal, L.G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Vannozzi, C. 2012 Coalescence of surfactant covered drops in extensional flows: effects of the interfacial diffusivity. Phys. Fluids 24 (8), 082101.CrossRefGoogle Scholar
Verwijlen, T., Moldenaers, P. & Vermant, J. 2013 A fixture for interfacial dilatational rheometry using a rotational rheometer. Eur. Phys. J. Spec. Top. 222 (1), 8397.CrossRefGoogle Scholar
Xiong, W., Ren, C., Tian, M., Yang, X., Li, J. & Li, B. 2018 Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chem. 252, 181188.CrossRefGoogle Scholar
Zell, Z.A., Nowbahar, A., Mansard, V., Leal, L.G., Deshmukh, S.S., Mecca, J.M., Tucker, C.J. & Squires, T.M. 2014 Surface shear inviscidity of soluble surfactants. Proc. Natl Acad. Sci. 111 (10), 36773682.CrossRefGoogle ScholarPubMed