Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-13T19:53:58.488Z Has data issue: false hasContentIssue false

Fractal features of turbulent/non-turbulent interface in a shock wave/turbulent boundary-layer interaction flow

Published online by Cambridge University Press:  29 April 2019

Yi Zhuang
Affiliation:
Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Huijun Tan*
Affiliation:
Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Weixing Wang
Affiliation:
Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Xin Li
Affiliation:
Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Yunjie Guo
Affiliation:
Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
*
Email address for correspondence: thj@263.net

Abstract

Fractal features of the turbulent/non-turbulent interface (TNTI) in shock wave/turbulent boundary-layer interaction (SWBLI) flows are essential in understanding the physics of the SWBLI and the supersonic turbulent boundary layer, yet have received almost no attention previously. Accordingly, this study utilises a high spatiotemporal resolution visualisation technique, ice-cluster-based planar laser scattering (IC-PLS), to acquire the TNTI downstream of the reattachment in a SWBLI flow. Evolution of the fractal features of the TNTI in this SWBLI flow is analysed by comparing the parameters of the TNTI acquired in this study with those from a previous result (Zhuang et al.J. Fluid Mech., vol. 843, 2018a).

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, T. C. Jr & Messiter, A. F. 1980 Analysis of two-dimensional interactions between shock waves and boundary layers. Annu. Rev. Fluid Mech. 12 (1), 103138.10.1146/annurev.fl.12.010180.000535Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.10.1017/S0022112000001580Google Scholar
Babinsky, H. & Harvey, J. K. 2011 Shock Wave-Boundary-Layer Interactions, vol. 32. Cambridge University Press.Google Scholar
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.Google Scholar
Corrsin, S. & Kistler, A. L.1954 The free-stream boundaries of turbulent flows. NACA Tech. Rep. 3133.Google Scholar
Davidson, P. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.10.1093/acprof:oso/9780198722588.001.0001Google Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.10.2514/2.1476Google Scholar
Ferri, A.1940 Experimental results with airfoils tested in the high-speed tunnel at Guidonia. NACA Tech. Rep. 946.Google Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. (72), 8099.10.1016/j.paerosci.2014.09.002Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007 Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys. Fluids 19 (7), 071702.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.Google Scholar
Jahanbakhshi, R. & Madnia, C. K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.Google Scholar
Jahanbakhshi, R., Vaghefi, N. S. & Madnia, C. K. 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.10.1063/1.4933250Google Scholar
Liebovitch, L. S. & Toth, T. 1989 A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A 141 (89), 386390.Google Scholar
Loginov, M. S., Adams, N. A. & Zheltovodov, A. A. 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135169.10.1017/S0022112006000930Google Scholar
Mandelbrot, B. B. 1982 The Fractal Geometry of Nature, vol. 1. WH Freeman.Google Scholar
Mathew, J. & Basu, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.10.1063/1.1480831Google Scholar
Poggie, J., Erbland, P. J., Smits, A. J. & Miles, R. B. 2004 Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering. Exp. Fluids 37 (3), 438454.Google Scholar
Prasad, R. R. & Sreenivasan, K. R. 1989 Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7 (4), 259264.Google Scholar
Prasad, R. R. & Sreenivasan, K. R. 1990 The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Phys. Fluids A 2 (5), 792807.10.1063/1.857733Google Scholar
Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A 3 (8), 19151923.10.1063/1.857921Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012 NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 9 (7), 671675.10.1038/nmeth.2089Google Scholar
Settles, G. S., Fitzpatrick, T. J. & Bogdonoff, S. M. 1979 Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 17 (6), 579585.Google Scholar
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.Google Scholar
da Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.Google Scholar
da Silva, C. B. & dos Reis, R. J. N. 2011 The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. Lond. A 369 (1937), 738753.Google Scholar
de Silva, C. M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent–nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.Google Scholar
Smith, M. W. & Smits, A. J. 1995 Visualization of the structure of supersonic turbulent boundary layers. Exp. Fluids 18 (4), 288302.Google Scholar
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer Science & Business Media.Google Scholar
Sreenivasan, K_R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23 (1), 539604.Google Scholar
Sreenivasan, K. R. & Meneveau, C. J. F. M. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.Google Scholar
Sreenivasan, K. R., Ramshankar, R. & Meneveau, C. H. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421 (1860), 79108.Google Scholar
Taveira, R. R. & da Silva, C. B. 2013 Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys. Fluids 25 (1), 015114.Google Scholar
Vaghefi, N. S. & Madnia, C. K. 2015 Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J. Fluid Mech. 774, 6794.10.1017/jfm.2015.235Google Scholar
Wegener, P. P. & Pouring, A. A. 1964 Experiments on condensation of water vapor by homogeneous nucleation in nozzles. Phys. Fluids 7 (3), 352361.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.10.1017/S0022112009006600Google Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.10.1063/1.4761837Google Scholar
Zhao, Y., Yi, S., Tian, L. & Cheng, Z. 2009 Supersonic flow imaging via nanoparticles. Sci. China Ser. E: Technol. Sci. 52 (12), 36403648.Google Scholar
Zheltovodov, A.1996 Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. AIAA Paper 96-1977.10.2514/6.1996-1977Google Scholar
Zhuang, Y., Tan, H., Huang, H., Liu, Y. & Zhang, Y. 2018a Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers. J. Fluid Mech. 843, R2.Google Scholar
Zhuang, Y., Tan, H.-J., Li, X., Guo, Y.-J. & Sheng, F.-J. 2018b Evolution of coherent vortical structures in a shock wave/turbulent boundary-layer interaction flow. Phys. Fluids 30 (11), 111702.Google Scholar
Zhuang, Y., Tan, H.-J., Li, X., Sheng, F.-J. & Zhang, Y.-C. 2018c Letter: Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow. Phys. Fluids 30 (6), 061702.10.1063/1.5034242Google Scholar
Zhuang, Y., Tan, H.-J., Liu, Y.-Z., Zhang, Y.-C. & Ling, Y. 2017 High resolution visualization of Görtler-like vortices in supersonic compression ramp flow. J. Vis. 20 (3), 505508.Google Scholar
Supplementary material: File

Zhuang et al. supplementary material

Zhuang et al. supplementary material 1

Download Zhuang et al. supplementary material(File)
File 1.1 MB