Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T21:03:32.902Z Has data issue: false hasContentIssue false

Flow structure beneath rotational water waves with stagnation points

Published online by Cambridge University Press:  06 January 2017

Roberto Ribeiro Jr
Affiliation:
UFPR/Federal University of Paraná, Departamento de Matemática, Centro Politécnico, Jardim das Américas, Caixa Postal 19081, Curitiba, PR 81531-980, Brazil
Paul A. Milewski
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
André Nachbin*
Affiliation:
IMPA/National Institute of Pure and Applied Mathematics, Est. D. Castorina, 110, Rio de Janeiro, RJ 22460-320, Brazil
*
Email address for correspondence: nachbin@impa.br

Abstract

The purpose of this work is to explore in detail the structure of the interior flow generated by periodic surface waves on a fluid with constant vorticity. The problem is mapped conformally to a strip and solved numerically using spectral methods. Once the solution is known, the streamlines, pressure and particle paths can be found and mapped back to the physical domain. We find that the flow beneath the waves contains zero, one, two or three stagnation points in a frame moving with the wave speed, and describe the bifurcations between these flows. When the vorticity is sufficiently strong, the pressure in the flow and on the bottom boundary also has very different features from the usual irrotational wave case.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A. & Kalish, H. 2013 Reconstruction of the pressure in long-wave models with constant vorticity. Eur. J. Mech. (B/Fluids) 37, 187194.Google Scholar
Amick, C. J., Fraenkel, L. E. & Toland, J. F. 1982 On the Stokes conjecture for the wave of extreme form. Acta Mathematica 148, 193214.Google Scholar
Choi, W. 2003 Strongly nonlinear long gravity waves in uniform shear flows. Phys. Rev. E 68, 026305.Google Scholar
Choi, W. 2009 Nonlinear surface waves interacting with a linear shear current. Maths Comput. Simul. 80, 2936.Google Scholar
Constantin, A. 2006 The trajectories of particles in Stokes waves. Invent. Math. 166, 523535.Google Scholar
Constantin, A. 2012 Nonlinear water waves. Phil. Trans. R. Soc. Lond. A 370, 15011504.Google Scholar
Constantin, A., Ehrnström, M. & Wahlén, E. 2007 Symmetry for steady gravity water waves with vorticity. Duke Math. J. 140, 591603.Google Scholar
Constantin, A. & Escher, J. 2004a Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Maths 15, 755768.Google Scholar
Constantin, A. & Escher, J. 2004b Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171181.Google Scholar
Constantin, A. & Escher, J. 2011 Analyticity of periodic traveling free surface water waves with vorticity. Ann. Maths 173 (2), 559568.Google Scholar
Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Maths LVII, 481527.Google Scholar
Constantin, A. & Strauss, W. 2007 Rotational steady water waves near stagnation. Phil. Trans. R. Soc. Lond. A 365, 22272239.Google Scholar
Constantin, A. & Strauss, W. 2010 Pressure beneath a Stokes wave. Commun. Pure Appl. Maths 63, 533557.Google Scholar
Constantin, A. & Strauss, W. 2011 Periodic traveling gravity water waves with discontinuous vorticity. Arch. Rat. Mech. Anal. 202, 133175.Google Scholar
Constantin, A., Strauss, W. & Varvaruca, E.2014 Global bifurcation of steady gravity water waves with critical layers. Acta Mathematica (to appear), arXiv:1407.0092v1 [math.AP].Google Scholar
Constantin, A. & Varvaruca, E. 2011 Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Rat. Mech. Anal. 199, 3367.Google Scholar
Constantin, A. & Villari, G. 2008 Particle trajectories in linear water waves. J. Math. Fluid Mech. 10, 13361344.Google Scholar
Ehrnström, M., Escher, J. & Villari, G. 2012 Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407419.Google Scholar
Ehrnström, M. & Villari, G. 2008 Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 18881909.Google Scholar
Hur, V. M. 2007 Symmetry of steady periodic water waves with vorticity. Phil. Trans. R. Soc. Lond. A 365, 22032214.Google Scholar
Ko, J. & Strauss, W. 2008a Effect of vorticity on steady water waves. J. Fluid Mech. 608, 197215.Google Scholar
Ko, J. & Strauss, W. 2008b Large-amplitude steady rotational water waves. Eur. J. Mech. (B/Fluids) 27, 96109.Google Scholar
Lewy, H. 1952 A note on harmonic functions and a hydrodynamical application. Proc. Am. Math. Soc. 3, 111113.Google Scholar
Longuett-Higgins, M. S. 1979 The trajectories of particles in deep, symmetric gravity waves. J. Fluid Mech. 94, 497517.Google Scholar
Milewski, P. A., Vanden-Broeck, J.-M. & Wang, Z. 2010 Dynamics of steep two-dimensional gravity–capillary solitary waves. J. Fluid Mech. 664, 466477.Google Scholar
Nachbin, A. & Ribeiro, R. Jr 2014 A boundary integral formulation for particle trajectories in Stokes waves. DCDS-A 34 (8), 31353153.Google Scholar
Peregrine, D. H. 1974 Surface shear waves. J. Hydraul. Div. ASCE 100, 12151227.Google Scholar
Plotnikov, P. I. 2002 Proof of the Stokes conjecture in the theory of surface waves. Dinamika Sploshn. Sredy 57, 4176; 1982 (in Russian); translated to English: Stud. Appl. Maths 108, 217–244.Google Scholar
Simmen, J. A. & Saffman, P. G. 1985 Steady deep-water waves on a linear shear current. Stud. Appl. Maths 73, 3557.Google Scholar
Strauss, W. A. & Wheeler, M. H. 2016 Bound on the slope of steady water waves with favorable vorticity. Arch. Rat. Mech. Anal. 222, 15551580.Google Scholar
Teles da Silva, A. F. & Peregrine, D. H. 1988 Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281302.Google Scholar
Toland, J. F. 2000 On the symmetry theory for Stokes waves of finite and infinite depth. In Trends in Applications of Mathematics to Mechanics (Nice, 1998), Surv. Pure Appl. Maths, vol. 106, pp. 207217. Chapman & Hall/CRC Monogr.Google Scholar
Vanden-Broeck, J.-M. 1994 Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech. 274, 339348.Google Scholar
Vanden-Broeck, J.-M. 1996 Periodic waves with constant vorticity in water of infinite depth. IMA J. Appl. Maths 56, 207217.Google Scholar
Varvaruca, E. 2009 On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246, 40434076.Google Scholar
Vasan, V. & Oliveras, K. 2014 Pressure beneath a traveling wave with vorticity constant. DSDC-A 34 (8), 32193239.Google Scholar
Wahlén, E. 2009 Steady water waves with a critical layer. J. Differ. Equ. 246, 24682483.Google Scholar