Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-20T00:28:25.508Z Has data issue: false hasContentIssue false

Dispersive and dispersive-like bores in channels with sloping banks

Published online by Cambridge University Press:  14 May 2019

R. Chassagne
Affiliation:
University Grenoble Alpes, Irstea, ETNA, 38000 Grenoble, France
A. G. Filippini
Affiliation:
University of Bordeaux, CNRS, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
M. Ricchiuto*
Affiliation:
Team CARDAMOM, Inria Bordeaux – Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talence CEDEX, France
P. Bonneton
Affiliation:
University of Bordeaux, CNRS, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire, F-33615 Pessac, France
*
Email address for correspondence: mario.ricchiuto@inria.fr

Abstract

In this paper a detailed analysis of undular bore dynamics in channels of variable cross-section is presented. Two undular bore regimes, low Froude number (LFN) and high Froude number (HFN), are simulated with a Serre–Green–Naghdi model, and the results are compared with the experiments by Treske (1994). We show that contrary to Favre waves and HFN bores, which are controlled by dispersive non-hydrostatic mechanisms, LFN bores correspond to a hydrostatic phenomenon. The dispersive-like properties of the LFN bores is related to wave refraction on the banks in a way similar to that of edge waves in the near shore. A fully hydrostatic asymptotic model for these dispersive-like bores is derived and compared to the observations, confirming our claim.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Samaniego, B. & Lannes, D. 2008 A Nash–Moser theorem for singular evolution equations. Application to the Serre and Green–Naghdi equations. Indiana Univ. Math. J. 57 (1), 97131.Google Scholar
Benjamin, T. B. & Lighthill, M. J. 1954 On cnoidal waves and bores. Proc. R. Soc. Lond. A 224 (1159), 448460.Google Scholar
Bonneton, P. 2007 Modelling of periodic wave transformation in the inner surf zone. Ocean Engng 34 (10), 14591471.Google Scholar
Bonneton, P., Bonneton, N., Parisot, J.-P. & Castelle, B. 2015 Tidal bore dynamics in funnel-shaped estuaries. J. Geophys. Res. Oceans 120 (2), 923941.Google Scholar
Bonneton, N., Bonneton, P., Parisot, J.-P., Sottolichio, A. & Detandt, G. 2012 Tidal bore and Mascaret – example of Garonne and Seine Rivers. C. R. Geosci. 344, 508515.Google Scholar
Bonneton, P., de Loock, J. V., Parisot, J.-P., Bonneton, N., Sottolichio, A., Detandt, G., Castelle, B., Marieu, V. & Pochon, N. 2011 On the occurrence of tidal bores – the Garonne River case. J. Coast. Res. 64, 14621466.Google Scholar
Bonneton, P., Parisot, J.-P., Bonneton, N., Sottolichio, A., Castelle, B., Marieu, V., Pochon, N. & de Loock, V. J. 2011 Large amplitude undular tidal bore propagation in the Garonne River, France. In Proceedings of the 21st ISOPE Conference, pp. 870874. ISOPE.Google Scholar
Chanson, H. 2004 Hydraulics of Open Channel Flow, 2nd edn. Elsevier.Google Scholar
Chanson, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. (B/Fluids) 28 (2), 191210.Google Scholar
Chazel, F., Lannes, D. & Marche, F. 2011 Numerical simulation of strongly nonlinear and dispersive waves using a Green–Naghdi model. J. Sci. Comput. 48 (3), 105116.Google Scholar
Dingemans, M. W. 1997 Water Wave Propagation Over Uneven Bottoms: Linear Wave Propagation. World Scientific.Google Scholar
El, G. A., Grimshaw, R. H. J. & Smyth, N. F. 2006 Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18 (2), 027104.Google Scholar
Favre, H. 1935 Etude théorique et expérimentale des ondes de translation dans les canaux découverts. Dunod.Google Scholar
Filippini, A. G., Kazolea, M. & Ricchiuto, M. 2016 A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up. J. Comput. Phys. 310 (Suppl. C), 381417.Google Scholar
Filippini, A. G., Kazolea, M. & Ricchiuto, M. 2017a A flexible 2D nonlinear approach for nonlinear wave propagation, breaking and run up. In Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference (ISOPE), San Francisco, CA, United States, pp. 13231331. ISOPE.Google Scholar
Filippini, A. G., Kazolea, M. & Ricchiuto, M. 2017b Hybrid finite-volume/finite-element simulations of fully-nonlinear/weakly dispersive wave propagation, breaking, and runup on unstructured grids. In SIAM Conference on Mathematical and Computational Issues in the Geosciences, Erlangen, Germany. SIAM.Google Scholar
Gourlay, T. P. 2001 The supercritical bore produced by a high-speed ship in a channel. J. Fluid Mech. 434, 399409.Google Scholar
Johnson, R. S. 1972 Shallow water waves on a viscous fluid – the Undular Bore. Phys. Fluids 15 (10), 16931699.Google Scholar
Johnson, R. S. 2007 Edge waves: theories past and present. Phil. Trans. R. Soc. Lond. A 365 (1858), 23592376.Google Scholar
Kazolea, M., Delis, A. I. & Synolakis, C. E. 2014 Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations. J. Comput. Phys. 271 (Suppl. C), 281305.Google Scholar
Kazolea, M. & Ricchiuto, M. 2018 On wave breaking for Boussinesq-type models. Ocean Model. 123, 1639.Google Scholar
Ketcheson, D. & Quezada de Luna, M. 2015 Diffractons: solitary waves created by diffraction in periodic media. Multiscale Model. Simul. 13 (1), 440458.Google Scholar
Lannes, D. 2013 The Water Waves Problem. Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs. Americal Mathematical Society.Google Scholar
Lannes, D. & Marche, F. 2015 A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations. J. Comput. Phys. 282, 238268.Google Scholar
Lemoine, R. 1948 Notules hydrauliques. Sur les ondes positives de translation dans les canaux et sur le ressaut ondulé de faible amplitude. La Houille Blanche 2, 183186.Google Scholar
Miles, J. 1989 Edge waves on a gently sloping beach. J. Fluid Mech. 199, 125131.Google Scholar
Peregrine, D. H. 1966 Calculations of the development of an undular bore. J. Fluid Mech. 25 (02), 321.Google Scholar
Putra, Y. S., Beaudoin, A., Rousseaux, G., Thomas, L. & Huberson, S. 2019 2D numerical contributions for the study of non-cohesive sediment transport beneath tidal bores. C. R. Mèc. 347 (2), 166180.Google Scholar
Quezada de Luna, M. & Ketcheson, D. 2013 Two-dimensional wave propagation in layered periodic media. SIAM J. Appl. Math. 74 (6), 18521869.Google Scholar
Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D. & Grilli, S. T. 2012 A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 43–44, 3651.Google Scholar
Shi, F., Malej, M., Smith, J. M. & Kirby, J. T. 2018 Breaking of ship bores in a Boussinesq-type ship-wake model. Coast. Engng 132, 112.Google Scholar
Soares Frazao, S. & Zech, Y. 2002 Undular bores and secondary waves – experiments and hybrid finite-volume modelling. J. Hydraul Res. 40 (1), 3343.Google Scholar
Tissier, M.2011 Etude numérique de la transformation des vagues en zone littorale, de la zone de levée aux zones de surf et de jet de rive. PhD thesis, University of Bordeaux 1.Google Scholar
Tissier, M., Bonneton, P., Marche, F., Chazel, F. & Lannes, D. 2012 A new approach to handle wave breaking in fully non-linear Boussinesq models. Coast. Engng 67 (Suppl. C), 5466.Google Scholar
Tonelli, M. & Petti, M. 2009 Hybrid finite-volume finite-difference scheme for 2DH improved Boussinesq equations. Coast. Engng 56, 609620.Google Scholar
Treske, A. 1994 Undular bores (favre-waves) in open channels – experimental studies. J. Hydraul. Res. 32 (3), 355370.Google Scholar
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.Google Scholar
Wei, G., Kirby, J. T., Grilli, S. T. & Subramanya, R. 1995 A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 7192.Google Scholar