Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-24T04:51:16.906Z Has data issue: false hasContentIssue false

Crossover between two- and three-dimensional turbulence in spatial mixing layers

Published online by Cambridge University Press:  18 March 2014

Abstract

We investigate how the domain depth affects the turbulent behaviour in spatially developing mixing layers by means of large-eddy simulations based on a spectral vanishing viscosity technique. Analyses of spectra of the vertical velocity, of Lumley’s diagrams, of the turbulent kinetic energy and of the vortex stretching show that a two-dimensional behaviour of the turbulence is promoted in spatial mixing layers by constricting the fluid motion in one direction. This finding is in agreement with previous works on turbulent systems constrained by a geometric anisotropy, pioneered by Smith, Chasnov & Waleffe (Phys. Rev. Lett., vol. 77, 1996, pp. 2467–2470). We observe that the growth of the momentum thickness along the streamwise direction is damped in a confined domain. An almost fully two-dimensional turbulent behaviour is observed when the momentum thickness is of the same order of magnitude as the confining scale.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, J. H. & Mehta, R. D. 1990 Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28, 20342042.Google Scholar
Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499525.CrossRefGoogle Scholar
Biancofiore, L., Gallaire, F. & Pasquetti, R. 2011 Influence of confinement on a two-dimensional wake. J. Fluid Mech. 688, 297320.CrossRefGoogle Scholar
Biancofiore, L., Gallaire, F. & Pasquetti, R. 2012 Influence of confinement on obstacle-free turbulent wakes. Comput. Fluids 58, 2744.Google Scholar
Boffetta, G. 2007 Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech. 589, 253260.CrossRefGoogle Scholar
Boffetta, G., De Lillo, F., Mazzino, A. & Musacchio, S. 2012 Bolgiano scale in confined Rayleigh–Taylor turbulence. J. Fluid Mech. 690, 426440.Google Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev Fluid Mech. 44, 427451.Google Scholar
Boffetta, G. & Musacchio, S. 2010 Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82, 016307.Google Scholar
Brancher, P., Chomaz, J.-M. & Huerre, P. 1994 Direct numerical simulations of round jets: vortex induction and side jets. Phys. Fluids 6, 17681774.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, 775816.Google Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104, 184506.Google Scholar
Chandrsuda, C., Mehta, R. D., Weir, A. D. & Bradshaw, P. 1978 Effect of free-stream turbulence on large structure in turbulent mixing layers. J. Fluid Mech. 85, 693704.Google Scholar
Cholet, J.-P. & Lesieur, M. 1981 Parametrization of small scales of three dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38, 27472757.Google Scholar
Comte, P., Lesieur, M. & Lamballais, E. 1992 Small scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A 4, 27612778.Google Scholar
Comte, P., Silvestrini, J. H. & Bégou, P. 1998 Streamwise vortices in large-eddy simulations of mixing layers. Eur. J. Mech. B 17, 615637.Google Scholar
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2008 Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101, 094501.Google Scholar
Fox, S. & Davidson, P. A. 2010 Freely decaying two-dimensional turbulence. J. Fluid Mech. 659, 351364.Google Scholar
Gilbert, A. D. 1988 Spiral structures and spectra in two-dimensional turbulence. J. Fluid Mech. 193, 475497.Google Scholar
Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layer. Annu. Rev. Fluid Mech. 16, 365424.Google Scholar
Karamanos, G. S. & Karniadakis, G. E. 2000 A spectral vanishing viscosity method for large-eddy simulation. J. Comput. Phys. 163, 2250.Google Scholar
Kraichnan, R. H. & Montgomery, D. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43, 547619.CrossRefGoogle Scholar
Lesieur, M., Staquet, C., Le Roy, P. & Comte, P. 1988 The mixing layer and its coherence examined from the point of view of two-dimensional turbulence. J. Fluid Mech. 192, 511534.Google Scholar
Lindborg, E. & Vallgren, A. 2010 Testing Batchelor’s similarity hypotheses for decaying two-dimensional turbulence. Phys. Fluids 22, 091704.Google Scholar
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.Google Scholar
Maday, Y., Ould Kaber, S. M. & Tadmor, E. 1993 Legendre pseudo-spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30 (2), 321342.CrossRefGoogle Scholar
Minguez, M., Pasquetti, R. & Serre, E. 2008 High-order large-eddy simulation of flow over a simplified car model. Phys. Fluids 20, 095101.Google Scholar
Ngan, K., Straub, D. & Bartello, P. 2005 Aspect ratio effects in quasi-two-dimensional turbulence. Phys. Fluids 17, 125102.Google Scholar
Ngan, K., Straub, D. & Bartello, P. 2008 Dissipation of synoptic-scale flow by small-scale turbulence. J. Atmos. Sci. 65, 766791.CrossRefGoogle Scholar
Pasquetti, R. 2005 Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters. J. Turbul. 6, N12.Google Scholar
Pasquetti, R. 2006 Spectral vanishing viscosity method for large-eddy simulation of turbulent flows. J. Sci. Comput. 27, 365375.Google Scholar
Pasquetti, R. 2010 Temporal/spatial simulation of the stratified far wake of a sphere. Comput. Fluids 40, 179187.Google Scholar
Picano, F. & Hanjalić, K.Leray-$\alpha $ regularization of the Smagorinsky-closed filtered equations for turbulent jets at high Reynolds numbers. Flow Turbul. Combust. 89 (4), 627650.CrossRefGoogle Scholar
Pierrehumbert, R. T. & Widnall, S. E. 1982 The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 5982.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sabbah, C. & Pasquetti, R. 1998 A divergence-free multi-domain spectral solver of the Navier–Stokes equations in geometries of high aspect ratio. J. Comput. Phys. 139, 359379.Google Scholar
Shats, M., Byrne, D. & Xia, H. 2010 Turbulence decay rate as a measure of flow dimensionality. Phys. Rev. Lett. 105, 264501.Google Scholar
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77, 24672470.Google Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex-pairing, the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237255.Google Scholar
Xia, J., Byrne, D., Falkovich, D. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321324.Google Scholar
Xu, C. J. & Pasquetti, R. 2004 Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys. 196, 680704.Google Scholar