Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-14T10:08:01.841Z Has data issue: false hasContentIssue false

Cracking of submerged beds

Published online by Cambridge University Press:  14 August 2024

Satyanu Bhadra
Affiliation:
Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
Anit Sane
Affiliation:
Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
Akash Ghosh
Affiliation:
Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
Shankar Ghosh*
Affiliation:
Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
Kirti Chandra Sahu*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, 502 284 Telangana, India
*
Email addresses for correspondence: sghosh@tifr.res.in, ksahu@che.iith.ac.in
Email addresses for correspondence: sghosh@tifr.res.in, ksahu@che.iith.ac.in

Abstract

We investigate the phenomena of crater formation and gas release caused by projectile impact on underwater beds, which occurs in many natural, geophysical and industrial applications. The bed in our experiment is constructed of hydrophobic particles, which trap a substantial amount of air in the pores of the bed. In contrast to dry beds, the air–water interface in a submerged bed generates a granular skin that provides rigidity to the medium by producing skin over the bulk. The projectile's energy is used to reorganize the grains, which causes the skin to crack, allowing the trapped air to escape. The morphology of the craters as a function of impact energy in submerged beds exhibits different scaling laws than what is known for dry beds. This phenomenon is attributed to the contact line motion on the hydrophobic fractal-like surface of submerged grains. The volume of the gas released is a function of multiple factors, chiefly the velocity of the projectile, depth of the bed and depth of the water column.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkarian, M., Protière, S., Aristoff, J.M. & Stone, H.A. 2013 Gravity-induced encapsulation of liquids by destabilization of granular rafts. Nat. Commun. 4 (1), 18.CrossRefGoogle ScholarPubMed
Aussillous, P. & Quéré, D. 2006 Properties of liquid marbles. Proc. R. Soc. A 462 (2067), 973999.CrossRefGoogle Scholar
Birch, S.P.D., Manga, M., Delbridge, B. & Chamberlain, M. 2014 Penetration of spherical projectiles into wet granular media. Phys. Rev. E 90, 032208.CrossRefGoogle ScholarPubMed
De Vet, S.J & de Bruyn, J.R 2007 Shape of impact craters in granular media. Phys. Rev. E 76 (4), 041306.CrossRefGoogle ScholarPubMed
Glasheen, J.W. & McMahon, T.A. 1996 Vertical water entry of disks at low froude numbers. Phys. Fluids 8 (8), 20782083.CrossRefGoogle Scholar
Gostiaux, L., Gayvallet, H. & Géminard, J.C. 2002 Dynamics of a gas bubble rising through a thin immersed layer of granular material: an experimental study. Granul. Matt. 4 (2), 3944.CrossRefGoogle Scholar
Herminghaus, S. 2005 Dynamics of wet granular matter. Adv. Phys. 54 (3), 221261.CrossRefGoogle Scholar
Holsapple, K.A. 1993 The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21 (1), 333373.CrossRefGoogle Scholar
Karmakar, S., Sane, A., Bhattacharya, S. & Ghosh, S. 2017 Mechanics of a granular skin. Phys. Rev. E 95, 042903.CrossRefGoogle ScholarPubMed
Katsuragi, H. & Blum, J. 2017 The physics of protoplanetesimal dust agglomerates. IX. Mechanical properties of dust aggregates probed by a solid-projectile impact. Astrophys. J. 851 (1), 23.CrossRefGoogle Scholar
Katsuragi, H. & Durian, D.J. 2007 Unified force law for granular impact cratering. Nat. Phys. 3 (6), 420423.CrossRefGoogle Scholar
Krüger, T., Hergarten, S. & Kenkmann, T. 2018 Deriving morphometric parameters and the simple-to-complex transition diameter from a high-resolution, global database of fresh lunar impact craters $(d \ge 3$ km). J. Geophys. Res. 123 (10), 26672690.CrossRefGoogle Scholar
McHale, G. & Newton, M.I. 2011 Liquid marbles: principles and applications. Soft Matt. 7 (12), 54735481.CrossRefGoogle Scholar
Meier, J.A., Jewell, J.S., Brennen, C.E. & Imberger, J. 2011 Bubbles emerging from a submerged granular bed. J. Fluid Mech. 666, 189203.CrossRefGoogle Scholar
Melosh, H.J. 1989 Impact Cratering: A Geologic Process. Oxford University Press; Clarendon Press.Google Scholar
Munro, R.J., Bethke, N. & Dalziel, S.B. 2009 Sediment resuspension and erosion by vortex rings. Phys. Fluids 21 (4), 046601.CrossRefGoogle Scholar
Newhall, K.A. & Durian, D.J. 2003 Projectile-shape dependence of impact craters in loose granular media. Phys. Rev. E 68, 060301.CrossRefGoogle ScholarPubMed
Pacheco-Vazquez, F., Tacuma, A. & Marston, J. 2017 Craters produced by explosions in a granular medium. Phys. Rev. E 96 (3), 032904.CrossRefGoogle Scholar
Pakpour, M., Habibi, M., Møller, P. & Bonn, D. 2012 How to construct the perfect sandcastle. Sci. Rep. 2 (1), 13.CrossRefGoogle ScholarPubMed
Polycam Poly-Cam software, available at https://poly.cam/.Google Scholar
Protière, S. 2023 Particle rafts and armored droplets. Annu. Rev. Fluid Mech. 55, 459480.CrossRefGoogle Scholar
Sellami, N., Dewar, M., Stahl, H. & Chen, B. 2015 Dynamics of rising CO$_2$ bubble plumes in the QICS field experiment. Part 1. The experiment. Intl J. Greenh. Gas Control 38, 4451.CrossRefGoogle Scholar
Sharaf, D.M., Premlata, A.R., Tripathi, M.K., Karri, B. & Sahu, K.C. 2017 Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids 29 (12), 122104.CrossRefGoogle Scholar
Soulie, F., Cherblanc, F., El Youssoufi, M.S. & Saix, C. 2006 Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Intl J. Numer. Anal. Meth. Geomech. 30 (3), 213228.CrossRefGoogle Scholar
Strauch, S. & Herminghaus, S. 2012 Wet granular matter: a truly complex fluid. Soft Matt. 8 (32), 82718280.CrossRefGoogle Scholar
Subramaniam, A.B., Abkarian, M., Mahadevan, L. & Stone, H.A. 2006 Mechanics of interfacial composite materials. Langmuir 22 (24), 1020410208.CrossRefGoogle ScholarPubMed
Takita, H. & Sumita, I. 2013 Low-velocity impact cratering experiments in a wet sand target. Phys. Rev. E 88, 022203.CrossRefGoogle Scholar
Tripathi, M.K., Sahu, K.C. & Govindarajan, R. 2015 Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6 (1), 19.CrossRefGoogle ScholarPubMed
Truscott, T.T., Epps, B.P. & Belden, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.CrossRefGoogle Scholar
Uehara, J.S., Ambroso, M.A., Ojha, R.P. & Durian, D.J. 2003 Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301.CrossRefGoogle ScholarPubMed
de Vet, S.J. & de Bruyn, J.R. 2012 The collapse of a cylindrical cavity in a granular medium. Granul. Matt. 14, 661670.CrossRefGoogle Scholar
Villalobos, C., Housset, M. & Varas, G. 2022 Geometrical description of impact cratering under microgravity conditions. Granul. Matt. 24 (2), 64.CrossRefGoogle Scholar
Walsh, A.M., Holloway, K.E., Habdas, P. & de Bruyn, J.R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91, 104301.CrossRefGoogle ScholarPubMed
Yoshida, J., Masuda, N., Ito, B., Furuya, T. & Sano, O. 2012 Collision of a vortex ring on granular material. Part 2. Erosion of the granular layer. Fluid Dyn. Res. 44 (1), 015502.CrossRefGoogle Scholar