Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T11:09:19.563Z Has data issue: false hasContentIssue false

Coulomb-driven electroconvection turbulence in two-dimensional cavity

Published online by Cambridge University Press:  31 January 2024

Yu Zhang
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, PR China
Di-Lin Chen
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, PR China
Xiao-Ping Luo
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, PR China
Kang Luo
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, PR China
Jian Wu
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
Hong-Liang Yi*
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, PR China
*
Email address for correspondence: yihongliang@hit.edu.cn

Abstract

A comprehensive direct numerical simulation of electroconvection (EC) turbulence caused by strong unipolar charge injection in a two-dimensional cavity is performed. The EC turbulence has strong fluctuations and intermittency in the closed cavity. Several dominant large-scale structures are found, including two vertical main rolls and a single primary roll. The flow mode significantly influences the charge transport efficiency. A nearly $Ne \sim T^{1/2}$ scaling stage is observed, and the optimal $Ne$ increment is related to the mode with two vertical rolls, while the single roll mode decreases the charge transport efficiency. As the flow strength increases, EC turbulence transitions from an electric force-dominated mode to an inertia-dominated mode. The former utilizes the Coulomb force more effectively and allocates more energy to convection. The vertical mean profiles of charge, electric field and energy budget provide intuitive information on the spatial energy distribution. With the aid of the energy-box technique, a detailed energy transport evolution is illustrated with changing electric Rayleigh numbers. This exploration of EC turbulence can help explain more complicated electrokinetic turbulence mechanisms and the successful utilization of Fourier mode decomposition and energy-box techniques is expected to benefit future EC studies.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiak, K. 2013 Numerical models in simulating wire-plate electrostatic precipitators: a review. J. Electrostat. 71 (4), 673680.CrossRefGoogle Scholar
Appelquist, E. & Schlatter, P. 2014 Simulating the laminar von Karman flow in Nek5000. Tech. Rep. KTH, Mechanics, QC 20140617.Google Scholar
Atten, P. & Lacroix, J.C. 1978 Electrohydrodynamic stability of liquids subjected to unipolar injection: non linear phenomena. J. Electrostat. 5, 439452.CrossRefGoogle Scholar
Atten, P. & Lacroix, J.C. 1979 Non-linear hydrodynamic stability of liquids subjected to unipolar injection. J. Méc. 18 (3), 469510.Google Scholar
Atten, P. & Malraison, B. 1990 Turbulent convection induced by weak unipolar injection in plane parallel electrode geometry. In 10th International Conference on Conduction and Breakdown in Dielectric Liquids, pp. 323–327. IEEE.Google Scholar
Atten, P., McCluskey, F.M.J. & Perez, A.T. 1988 Electroconvection and its effect on heat transfer. IEEE Trans. Elect. Insulation 23 (4), 659667.CrossRefGoogle Scholar
Atten, P. & Moreau, R. 1972 Stabilité électrohydrodynamique des liquides isolants soumis à une injection unipolaire. J. Méc. 11 (3), 471521.Google Scholar
Batchelor, G.K. 1971 Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.CrossRefGoogle ScholarPubMed
Cacucciolo, V., Shintake, J., Kuwajima, Y., Maeda, S., Floreano, D. & Shea, H. 2019 Stretchable pumps for soft machines. Nature 572 (7770), 516519.CrossRefGoogle ScholarPubMed
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Castellanos, A. 1991 Coulomb-driven convection in electrohydrodynamics. IEEE Trans. Elect. Insulation 26 (6), 12011215.CrossRefGoogle Scholar
Castellanos, A. 1998 Electrohydrodynamics, vol. 380. Springer Science & Business Media.CrossRefGoogle Scholar
Chandra, M. & Verma, M.K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83 (6), 067303.CrossRefGoogle ScholarPubMed
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.CrossRefGoogle ScholarPubMed
Chen, X., Huang, S.-D., Xia, K.-Q. & Xi, H.-D. 2019 Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection. J. Fluid Mech. 877, R1.CrossRefGoogle Scholar
Chong, K.L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3 (1), 013501.CrossRefGoogle Scholar
Deville, M.O., Fischer, P.F. & Mund, E.H. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.CrossRefGoogle Scholar
Dong, D.-L., Wang, B.-F., Dong, Y.-H., Huang, Y.-X., Jiang, N., Liu, Y.-L., Lu, Z.-M., Qiu, X., Tang, Z.-Q. & Zhou, Q. 2020 Influence of spatial arrangements of roughness elements on turbulent Rayleigh–Bénard convection. Phys. Fluids 32 (4), 045114.CrossRefGoogle Scholar
Druzgalski, C.L., Andersen, M.B. & Mani, A. 2013 Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25 (11), 110804.CrossRefGoogle Scholar
Dukhin, S.S. 1991 Electrokinetic phenomena of the second kind and their applications. Adv. Colloid Interface Sci. 35, 173196.CrossRefGoogle Scholar
Feng, Z., Zhang, M., Vazquez, P.A. & Shu, C. 2021 Deterministic and stochastic bifurcations in two-dimensional electroconvective flows. J. Fluid Mech. 922, A20.CrossRefGoogle Scholar
Fischer, P.F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133 (1), 84101.CrossRefGoogle Scholar
Foroozani, N., Krasnov, D. & Schumacher, J. 2021 Turbulent convection for different thermal boundary conditions at the plates. J. Fluid Mech. 907, A27.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92 (19), 194502.CrossRefGoogle Scholar
Gatti, D., Cimarelli, A., Hasegawa, Y., Frohnapfel, B. & Quadrio, M. 2018 Global energy fluxes in turbulent channels with flow control. J. Fluid Mech. 857, 345373.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
He, X., Sun, Z. & Zhang, M. 2022 Moffatt eddies in electrohydrodynamics flows: numerical simulations and analyses. J. Fluid Mech. 953, A14.CrossRefGoogle Scholar
Hopfinger, E.J. & Gosse, J.P. 1971 Charge transport by self-generated turbulence in insulating liquids submitted to unipolar injection. Phys. Fluids 14 (8), 16711682.CrossRefGoogle Scholar
Huang, J., Wang, Q., Guan, Y., Du, Z., Deepak Selvakumar, R. & Wu, J. 2021 Numerical investigation of instability and transition to chaos in electro-convection of dielectric liquids between concentric cylinders. Phys. Fluids 33 (4), 044112.CrossRefGoogle Scholar
Kim, S.J., Wang, Y.-C., Lee, J.H., Jang, H. & Han, J. 2007 Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 99, 044501.CrossRefGoogle Scholar
Kourmatzis, A., Ergene, E.L., Shrimpton, J.S., Kyritsis, D.C., Mashayek, F. & Huo, M. 2012 Combined aerodynamic and electrostatic atomization of dielectric liquid jets. Exp. Fluids 53, 221235.CrossRefGoogle Scholar
Kourmatzis, A. & Shrimpton, J.S. 2012 Turbulent three-dimensional dielectric electrohydrodynamic convection between two plates. J. Fluid Mech. 696, 228262.CrossRefGoogle Scholar
Kourmatzis, A. & Shrimpton, J.S. 2014 Electrohydrodynamic inter-electrode flow and liquid jet characteristics in charge injection atomizers. Exp. Fluids 55, 113.CrossRefGoogle Scholar
Kourmatzis, A. & Shrimpton, J.S. 2015 Characteristics of electrohydrodynamic roll structures in laminar planar Couette flow. J. Phys. D: Appl. Phys. 49 (4), 045503.CrossRefGoogle Scholar
Kourmatzis, A. & Shrimpton, J.S. 2018 Turbulence closure models for free electroconvection. Intl J. Heat Fluid Flow 71, 153159.CrossRefGoogle Scholar
Lacroix, J.C., Atten, P. & Hopfinger, E.J. 1975 Electro-convection in a dielectric liquid layer subjected to unipolar injection. J. Fluid Mech. 69 (3), 539563.CrossRefGoogle Scholar
Li, T.-F., Su, Z.-G., Luo, K. & Yi, H.-L. 2020 Transition to chaos in electro-thermo-convection of a dielectric liquid in a square cavity. Phys. Fluids 32 (1), 013106.CrossRefGoogle Scholar
Luo, K., Gao, X.-L., He, X.-R., Yi, H.-L. & Wu, J. 2022 Formation of dissipative structures in a three-dimensional electro-thermo-convective flow. Phys. Rev. Fluids 7 (4), 043701.CrossRefGoogle Scholar
Luo, K., Wu, J., Yi, H.-L. & Tan, H.-P. 2016 Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids. Phys. Rev. E 93, 023309.CrossRefGoogle ScholarPubMed
Mani, A. & Wang, K.M. 2020 Electroconvection near electrochemical interfaces: experiments, modeling, and computation. Annu. Rev. Fluid Mech. 52 (1), 509529.CrossRefGoogle Scholar
McLean, K.J. 1988 Electrostatic precipitators. IEE Proc. A 135 (6), 347361.Google Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.CrossRefGoogle Scholar
Peplinski, A., Schlatter, P., Fischer, P.F. & Henningson, D.S. 2014 Stability tools for the spectral-element code Nek5000: application to jet-in-crossflow. In Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012, pp. 349–359. Springer.CrossRefGoogle Scholar
Pérez, A.T., Vázquez, P.A., Wu, J. & Traoré, P. 2014 Electrohydrodynamic linear stability analysis of dielectric liquids subjected to unipolar injection in a rectangular enclosure with rigid sidewalls. J. Fluid Mech. 758, 586602.CrossRefGoogle Scholar
Petschel, K., Wilczek, M., Breuer, M., Friedrich, R. & Hansen, U. 2011 Statistical analysis of global wind dynamics in vigorous Rayleigh–Bénard convection. Phys. Rev. E 84 (2), 026309.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Ricco, P., Ottonelli, C., Hasegawa, Y. & Quadrio, M. 2012 Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech. 700, 77104.CrossRefGoogle Scholar
Roccon, A., Zonta, F. & Soldati, A. 2021 Energy balance in lubricated drag-reduced turbulent channel flow. J. Fluid Mech. 911, A37.CrossRefGoogle Scholar
Saha, S., Biswas, P. & Nath, S. 2021 A review on spectral element solver Nek5000. AIP Conf. Proc. 2336 (1), 030001.CrossRefGoogle Scholar
Seyed-Yagoobi, J. 2005 Electrohydrodynamic pumping of dielectric liquids. J. Electrostat. 63 (6–10), 861869.CrossRefGoogle Scholar
Seyed-Yagoobi, J., Bryan, J.E. & Castaneda, J.A. 1995 Theoretical analysis of ion-drag pumping. IEEE Trans. Ind. Applics. 31 (3), 469476.CrossRefGoogle Scholar
Tang, J., Gong, L., Jiang, J., Li, Z. & Han, J. 2020 Numerical simulation of electrokinetic desalination using microporous permselective membranes. Desalination 477, 114262.CrossRefGoogle Scholar
Traoré, Ph. & Pérez, A.T. 2012 Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection. Phys. Fluids 24 (3), 037102.CrossRefGoogle Scholar
Tsai, P., Daya, Z.A., Deyirmenjian, V.B. & Morris, S.W. 2007 Direct numerical simulation of supercritical annular electroconvection. Phys. Rev. E 76 (2), 026305.CrossRefGoogle ScholarPubMed
Tsai, P., Daya, Z.A. & Morris, S.W. 2004 Aspect-ratio dependence of charge transport in turbulent electroconvection. Phys. Rev. Lett. 92 (8), 084503.CrossRefGoogle ScholarPubMed
Tsai, P., Daya, Z.A. & Morris, S.W. 2005 Charge transport scaling in turbulent electroconvection. Phys. Rev. E 72 (4), 046311.CrossRefGoogle ScholarPubMed
Tsai, P., Morris, S.W. & Daya, Z.A. 2008 Localized states in sheared electroconvection. Europhys. Lett. 84 (1), 14003.CrossRefGoogle Scholar
Vázquez, P.A. & Castellanos, A. 2013 Numerical simulation of EHD flows using discontinuous Galerkin finite element methods. Comput. Fluids 84, 270278.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.CrossRefGoogle Scholar
Wang, B.-F. & Sheu, T.W.-H. 2016 Numerical investigation of electrohydrodynamic instability and bifurcation in a dielectric liquid subjected to unipolar injection. Comput. Fluids 136, 110.CrossRefGoogle Scholar
Wang, B.-F., Zhou, Q. & Sun, C. 2020 Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6 (21), eaaz8239.CrossRefGoogle ScholarPubMed
Wang, Q., Guan, Y., Huang, J. & Wu, J. 2021 Chaotic electro-convection flow states of a dielectric liquid between two parallel electrodes. Eur. J. Mech. (B/Fluids) 89, 332348.CrossRefGoogle Scholar
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H. 2018 Flow reversals in two-dimensional thermal convection in tilted cells. J. Fluid Mech. 849, 355372.CrossRefGoogle Scholar
Whitehead, J.P. & Doering, C.R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 (24), 244501.CrossRefGoogle ScholarPubMed
Wu, J. & Traoré, P. 2015 A finite-volume method for electro-thermoconvective phenomena in a plane layer of dielectric liquid. Numer. Heat Transfer 68 (5), 471500.CrossRefGoogle Scholar
Wu, J., Traoré, P., Vázquez, P.A. & Pérez, A.T. 2013 Onset of convection in a finite two-dimensional container due to unipolar injection of ions. Phys. Rev. E 88, 053018.CrossRefGoogle Scholar
Xi, H.-D., Zhang, Y.-B., Hao, J.-T. & Xia, K.-Q. 2016 Higher-order flow modes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 3151.CrossRefGoogle Scholar
Xu, A., Chen, X., Wang, F. & Xi, H.-D. 2020 Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh–Bénard convection. Phys. Fluids 32 (10), 105112.CrossRefGoogle Scholar
Xu, A., Xu, B.-R. & Xi, H.-D. 2023 Wall-sheared thermal convection: heat transfer enhancement and turbulence relaminarization. J. Fluid Mech. 960, A2.CrossRefGoogle Scholar
Yoshikawa, H.N., Kang, C., Mutabazi, I., Zaussinger, F., Haun, P. & Egbers, C. 2020 Thermoelectrohydrodynamic convection in parallel plate capacitors under dielectric heating conditions. Phys. Rev. Fluids 5, 113503.CrossRefGoogle Scholar
Zhang, Y., Chen, D.-L., Liu, A.-J., Luo, K., Wu, J. & Yi, H.-L. 2022 Full bifurcation scenarios and pattern formation of laminar electroconvection in a cavity. Phys. Fluids 34 (10), 103612.CrossRefGoogle Scholar
Zhang, Y., Jiang, H.-K., Luo, K., Li, T.-F., Wu, J. & Yi, H.-L. 2023 Electro-thermo-convection in a high Prandtl number fluid: flow transition and heat transfer. Intl J. Heat Mass Transfer 201, 123630.CrossRefGoogle Scholar
Zhang, M., Martinelli, F., Wu, J., Schmid, P.J. & Quadrio, M. 2015 Modal and non-modal stability analysis of electrohydrodynamic flow with and without cross-flow. J. Fluid Mech. 770, 319349.CrossRefGoogle Scholar
Zhao, C.-B., Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 Suppression of flow reversals via manipulating corner rolls in plane Rayleigh–Bénard convection. J. Fluid Mech. 946, A44.CrossRefGoogle Scholar
Zhao, W. 2022 General flux model in the turbulence driven by multiscale forces. Phys. Rev. Fluids 7, 084607.CrossRefGoogle Scholar
Zhao, W. & Wang, G. 2017 Scaling of velocity and scalar structure functions in ac electrokinetic turbulence. Phys. Rev. E 95 (2), 023111.CrossRefGoogle ScholarPubMed
Zhu, X., Mathai, V., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2018 Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120 (14), 144502.CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary movie

Supplementary material: charge transport and flow mode evolutions in four different cases.
Download Zhang et al. supplementary movie(File)
File 9.5 MB