Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-30T05:08:17.893Z Has data issue: false hasContentIssue false

Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point

Published online by Cambridge University Press:  25 August 2010

LI HAO FENG
Affiliation:
Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics and Fluid Mechanics Key Laboratory of Education Ministry, Beijing 100191, China
JIN JUN WANG*
Affiliation:
Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics and Fluid Mechanics Key Laboratory of Education Ministry, Beijing 100191, China
*
Email address for correspondence: jjwang@buaa.edu.cn

Abstract

The flow over a circular cylinder controlled by a two-dimensional synthetic jet positioned at the mean rear stagnation point has been experimentally investigated in a water channel at the cylinder Reynolds number Re = 950. This is an innovative arrangement and the particle-image-velocimetry measurement indicates that it can lead to a novel and interesting phenomenon. The synthetic-jet vortex pairs induced near the exit convect downstream and interact with the vorticity shear layers behind both sides of the cylinder, resulting in the formation of new induced wake vortices. The present vortex synchronization occurs when the excitation frequency of the synthetic jet is between 1.67 and 5.00 times the natural shedding frequency at the dimensionless stroke length 99.5. However, it is suggested that the strength of the synthetic-jet vortex pair plays a more essential role in the occurrence of vortex synchronization than the excitation frequency. In addition, the wake-vortex shedding is converted into a symmetric mode from its original antisymmetric mode. The symmetric shedding mode weakens the interaction between the upper and lower wake vortices, resulting in a decrease in the turbulent kinetic energy produced by them. It also has a significant influence on the global flow field, including the velocity fluctuations, Reynolds stresses and flow topology. However, their distributions are still dominated by the large-scale coherent structures.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akilli, H., Karakus, C., Akar, A., Sahin, B. & Tumen, N. F. 2008 Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate. Trans. ASME J. Fluids Engng 130, 041401 (1–11).CrossRefGoogle Scholar
Akilli, H., Sahin, B. & Tumen, N. F. 2005 Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate. Flow Meas. Instrum. 16, 211219.CrossRefGoogle Scholar
Amitay, M., Honohan, A., Trautman, M. & Glezer, A. 1997 Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators. AIAA Paper 97-2004.CrossRefGoogle Scholar
Amitay, M., Smith, B. L. & Glezer, A. 1998 Aerodynamic flow control using synthetic jet technology. AIAA Paper 98-0208.CrossRefGoogle Scholar
Armstrong, B. J., Barnes, F. H. & Grant, I. 1986 The effect of a perturbation on the flow over a bluff cylinder. Phys. Fluids 29, 20952102.CrossRefGoogle Scholar
Armstrong, B. J., Barnes, F. H. & Grant, I. 1987 A comparison of the structure of the wake behind a circular cylinder in a steady flow with that in a perturbed flow. Phys. Fluids 30, 1926.CrossRefGoogle Scholar
Baek, H. & Karniadakis, G. E. 2009 Suppressing vortex-induced vibrations via passive means. J. Fluids Struct. 25, 848866.CrossRefGoogle Scholar
Balachandar, S., Mittal, R. & Najjar, F. M. 1997 Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. J. Fluid Mech. 351, 167199.CrossRefGoogle Scholar
Barbi, C., Favier, D. P., Maresca, C. A. & Telionis, D. P. 1986 Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J. Fluid Mech. 170, 527544.CrossRefGoogle Scholar
Benard, N., Balcon, N., Touchard, G. & Moreau, E. 2008 Control of diffuser jet flow: turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge. Exp. Fluids 45, 333355.CrossRefGoogle Scholar
Bendat, J. S. & Piersol, A. G. 2010 Random Data: Analysis and Measurement Procedures. Wiley.CrossRefGoogle Scholar
Béra, J. C., Michard, M., Sunyach, M. & Comte-Bellot, G. 2000 Changing lift and drag by jet oscillation: experiments on a circular cylinder with turbulent separation. Eur. J. Mech. B/Fluids 19, 575595.CrossRefGoogle Scholar
Blackburn, H. M. & Henderson, R. D. 1999 A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255286.CrossRefGoogle Scholar
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.CrossRefGoogle Scholar
Choi, H., Jeon, W. P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Crook, A., Sadri, A. M. & Wood, N. J. 1999 The development and implementation of synthetic jets for the control of separated flow. AIAA Paper 99-3176.CrossRefGoogle Scholar
Detemple-Laake, E. & Eckelmann, H. 1989 Phenomenology of Kármán vortex streets in oscillatory flow. Exp. Fluids 7, 217227.CrossRefGoogle Scholar
Dipankar, A., Sengupta, T. K. & Talla, S. B. 2007 Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers. J. Fluid Mech. 573, 171190.CrossRefGoogle Scholar
Feng, L. H., Wang, J. J. & Xu, C. J. 2008 Experimental verification of a novel actuator signal for efficient synthetic jet (in Chinese). J. Exp. Fluid Mech. 22, 610.Google Scholar
Fu, H. & Rockwell, D. 2005 Shallow flow past a cylinder: control of the near wake. J. Fluid Mech. 539, 124.CrossRefGoogle Scholar
Fujisawa, N. & Takeda, G. 2003 Flow control around a circular cylinder by internal acoustic excitation. J. Fluids Struct. 17, 903913.CrossRefGoogle Scholar
Fujisawa, N., Takeda, G. & Ike, N. 2004 Phase-averaged characteristics of flow around a circular cylinder under acoustic excitation control. J. Fluids Struct. 19, 159170.CrossRefGoogle Scholar
Gau, C., Wu, S. X. & Su, H. S. 2001 Synchronization of vortex shedding and heat transfer enhancement over a heated cylinder oscillating with small amplitude in streamwise direction. Trans. ASME J. Heat Transfer 123, 11391148.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34, 503529.CrossRefGoogle Scholar
Govardhan, R. & Williamson, C. H. K. 2001 Mean and fluctuating velocity fields in the wake of a freely-vibrating cylinder. J. Fluids Struct. 15, 489501.CrossRefGoogle Scholar
Griffin, O. M. & Hall, M. S. 1991 Review–vortex shedding lock-on and flow control in bluff body wakes. Trans. ASME J. Fluids Engng 113, 526537.CrossRefGoogle Scholar
Griffin, O. M. & Ramberg, S. E. 1976 Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech. 75, 257271.CrossRefGoogle Scholar
Hall, M. S. & Griffin, O. M. 1993 Vortex shedding and lock-on in a perturbed flow. Trans. ASME J. Fluids Engng 115, 283291.CrossRefGoogle Scholar
Hall, J. W., Ziada, S. & Weaver, D. S. 2003 Vortex-shedding from single and tandem cylinders in the presence of applied sound. J. Fluids Struct. 18, 741758.CrossRefGoogle Scholar
Huang, X. Y. 1995 Suppression of vortex shedding from a circular cylinder by internal acoustic excitation. J. Fluids Struct. 9, 563570.CrossRefGoogle Scholar
Huang, X. Y. 1996 Feedback control of vortex shedding from a circular cylinder. Exp. Fluids 20, 218224.CrossRefGoogle Scholar
Huang, J. F., Zhou, Y. & Zhou, T. 2006 Three-dimensional wake structure measurement using a modified PIV technique. Exp. Fluids 40, 884896.CrossRefGoogle Scholar
Hwang, J. Y., Yang, K. S. & Sun, S. H. 2003 Reduction of flow-induced forces on a circular cylinder using a detached splitter plate. Phys. Fluids 15, 24332436.CrossRefGoogle Scholar
Jarża, A. & Podolski, M. 2004 Turbulence structure in the vortex formation region behind a circular cylinder in lock-on conditions. Eur. J. Mech. B/Fluids 23, 535550.CrossRefGoogle Scholar
Jauvtis, N. & Williamson, C. H. K. 2004 The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 2362.CrossRefGoogle Scholar
Jukes, T. N. & Choi, K. S. 2009 Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Phys. Fluids 21, 084103.CrossRefGoogle Scholar
Jukes, T. N., Choi, K. S., Johnson, G. A. & Scott, S. J. 2006 Turbulent drag reduction by surface plasma through spanwise flow oscillation. AIAA Paper 2006-3693.CrossRefGoogle Scholar
Kim, S. H., Park, J. Y., Park, N., Bae, J. H. & Yoo, J. Y. 2009 Direct numerical simulation of vortex synchronization due to small perturbations. J. Fluid Mech. 634, 6190.CrossRefGoogle Scholar
Kim, W., Yoo, J. Y. & Sung, J. 2006 Dynamics of vortex lock-on in a perturbed cylinder wake. Phys. Fluids 18, 074103.CrossRefGoogle Scholar
Konstantinidis, E. & Balabani, S. 2007 Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J. Fluids Struct. 23, 10471063.CrossRefGoogle Scholar
Konstantinidis, E. & Balabani, S. 2008 Flow structure in the locked-on wake of a circular cylinder in pulsating flow: effect of forcing amplitude. Intl J. Heat Fluid Flow 29, 15671576.CrossRefGoogle Scholar
Konstantinidis, E., Balabani, S. & Yianneskis, M. 2003 The effect of flow perturbations on the near wake characteristics of a circular cylinder. J. Fluids Struct. 18, 367386.CrossRefGoogle Scholar
Konstantinidis, E., Balabani, S. & Yianneskis, M. 2005 a The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations. J. Fluid Mech. 543, 4555.CrossRefGoogle Scholar
Konstantinidis, E., Balabani, S. & Yianneskis, M. 2005 b Conditional averaging of PIV plane wake data using a cross-correlation approach. Exp. Fluids 39, 3847.CrossRefGoogle Scholar
Krishnamoorthy, S., Price, S. J. & Païdoussis, M. P. 2001 Cross-flow past an oscillating circular cylinder: synchronization phenomena in the near wake. J. Fluids Struct. 15, 955980.CrossRefGoogle Scholar
Liu, S. & Fu, S. 2003 Regimes of vortex shedding from an in-line oscillating circular cylinder in the uniform flow. Acta Mechanica Sin. 19, 118126.Google Scholar
Lucor, D. & Karniadakis, G. E. 2004 Noisy inflows cause a shedding-mode switching in flow past an oscillating cylinder. Phys. Rev. Lett. 92, 154501.CrossRefGoogle Scholar
Mahir, N. & Rockwell, D. 1996 Vortex formation from a forced system of two cylinders. Part I. Tandem arrangement. J. Fluids Struct. 10, 473489.CrossRefGoogle Scholar
Mittal, S. 2003 Effect of a ‘slip’ splitter plate on vortex shedding from a cylinder. Phys. Fluids 15, 817820.CrossRefGoogle Scholar
Nishihara, T., Kaneko, S. & Watanabe, T. 2005 Characteristics of fluid dynamic forces acting on a circular cylinder oscillated in the streamwise direction and its wake patterns. J. Fluids Struct. 20, 505518.CrossRefGoogle Scholar
Ongoren, A. & Rockwell, D. 1988 Flow structure from an oscillating cylinder. Part 2. Mode competition in the near wake. J. Fluid Mech. 191, 225245.CrossRefGoogle Scholar
Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide. Springer.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Schäfer, F., Breuer, M. & Durst, F. 2009 The dynamics of the transitional flow over a backward-facing step. J. Fluid Mech. 623, 85119.CrossRefGoogle Scholar
Shuster, J. M. & Smith, D. R. 2007 Experimental study of the formation and scaling of a round synthetic jet. Phys. Fluids 19, 045109.CrossRefGoogle Scholar
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids 10, 22812297.CrossRefGoogle Scholar
Stansby, P. K. 1976 The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear flows. J. Fluid Mech. 74, 641665.CrossRefGoogle Scholar
Sung, J. & Yoo, J. Y. 2003 Near-wake vortex motions behind a circular cylinder at low Reynolds number. J. Fluids Struct. 17, 261274.CrossRefGoogle Scholar
Szepessy, S., & Bearman, P. W. 1992 Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J. Fluid Mech. 234, 191217.CrossRefGoogle Scholar
Tan, G. K., Wang, J. J. & Li, Q. S. 2001 Drag reduction technique of cylinder and mechanism research (in Chinese). J. Beijing Univ. Aero. Astro. 27, 658661.Google Scholar
Tensi, J., Boué, I., Paillé, F. & Dury, G. 2002 Modification of the wake behind a circular cylinder by using synthetic jets. J. Visual. 5, 3744.CrossRefGoogle Scholar
Wang, J. J., Feng, L. H. & Xu, C. J. 2007 Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Sci. China, Ser. E 50, 550559.CrossRefGoogle Scholar
Xu, S. J., Zhou, Y. & Wang, M. H. 2006 A symmetric binary-vortex street behind a longitudinally oscillating cylinder. J. Fluid Mech. 556, 2743.CrossRefGoogle Scholar
Zdravkovich, M. M. 1997 Flow Around Circular Cylinders, vol. 1, Fundamentals. Oxford University Press.CrossRefGoogle Scholar
Zhang, P. F., Wang, J. J. & Feng, L. H. 2008 Review of zero-net-mass-flux jet and its application in separation flow control. Sci. China, Ser. E 51, 13151344.CrossRefGoogle Scholar
Zhou, C. Y. & Graham, J. M. R. 2000 A numerical study of cylinders in waves and currents. J. Fluids Struct. 14, 403428.CrossRefGoogle Scholar
Zhou, Y. & Yiu, M. W. 2006 Flow structure, momentum and heat transport in a two-tandem-cylinder wake. J. Fluid Mech. 548, 1748.CrossRefGoogle Scholar
Zhou, Y., Zhang, H. J. & Yiu, M. W. 2002 The turbulent wake of two side-by-side circular cylinders. J. Fluid Mech. 458, 303332.CrossRefGoogle Scholar