Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-31T10:02:48.986Z Has data issue: false hasContentIssue false

An experimental investigation of an axisymmetric jet in a co-flowing air stream

Published online by Cambridge University Press:  29 March 2006

R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Sydney
R. W. Bilger
Affiliation:
Department of Mechanical Engineering, University of Sydney

Abstract

An experimental investigation of the flow development of an axisymmetric jet exhausting into a moving air stream is made for two values of the ratio of jet velocity to external air velocity. The u-component turbulence intensity and Reynolds shear stress measurements together with the dissipation length scales inferred from measured u-component spectra suggest that the turbulence similarity assumptions are incorrect for the present flow situation. A discussion of the turbulence structure of the flow indicates that self-preservation does not apply for this situation and that the flow far downstream depends strongly on the complete past history.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bilger, R. W. 1968 3rd Austr. Conf. on Fluid Mech. & Hydraul. p. 159. Inst. Engrs, Australia.
Bilger, R. W. 1969 Dept. Mech. Engng, University of Sydney, Charles Kolling Res. Lab. Tech. Note, F-3.
Bradbury, L. J. S. 1971 Lecture presented at the Von Kármán Institute, Belgium.
Bradbury, L. J. S. & Riley, J. 1967 J. Fluid Mech. 27, 381.
Bradshaw, P. 1967 Aero. Res. Counc. R. & M. no. 3603.
Carmody, T. 1964 Trans. A.S.M.E., J. Basic Engng, 86, 869.
Champagne, F. H. & Wygnanski, I. J. 1971 Int. J. Heat Mass Transfer, 14, 1445.
Chevray, R. 1968 Trans. A.S.M.E., J. Basic. Engng, 90, 275.
Cooper, R. D. & Lutzky, M. 1955 U.S. Navy, David Taylor Model Basin Rep. no. 963.
Corrsin, S. & Uberoi, M. 1951 N.A.C.A. Rep. no. 1040.
Demetriades, A. 1968 J. Fluid Mech. 34, 465.
Fraser, D. 1970 Dept. Mech. Engng, University of Sydney, Charles Kolling Res. Lab.Tech. Note, F-20.
Gartshore, I. S. 1964 McGill University Rep. no. 64–4.
Gibson, M. M. 1963 J. Fluid Mech. 15, 161.
Gibson, C. H., Chen, C. C. & Lin, S. C. 1968 A.I.A.A. J. 6, 642.
Hanjalić, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609.
Hwang, N. H. C. & Baldwin, L. V. 1966 Trans. A.S.M.E., J. Basic Engng, 88, 261.
Kent, J. 1972 Ph.D. thesis, University of Sydney.
Lawn, C. J. 1971 J. Fluid Mech. 48, 477.
Luxton, R. E., Swenson, G. G. & Chadwick, B. S. 1967 In The Collection and Processing of Field Data (ed. E. F. Bradley & O. T. Denmead), p. 497. Interscience.
Patel, R. J. 1971 Aero. Quart. 22, 311.
Rotta, J. C. 1951 Z. Phys. 131, 51.
Rotta, J. C. 1971 AGARD Conf. Proc. no. 93.
Spalding, D. B. 1971 Chem. Engng Sci. 26, 689.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, Cambridge University Press.
Townsend, A. A. 1966 J. Fluid Mech. 26, 689.
Townsend, A. A. 1970 J. Fluid Mech. 41, 13.
Wygnanski, I. J. & Fiedler, H. 1969 J. Fluid Mech. 38, 577.