Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-97jns Total loading time: 0.352 Render date: 2021-09-24T18:03:41.656Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The absorption of axial acoustic waves by a perforated liner with bias flow

Published online by Cambridge University Press:  24 June 2003

JEFF D. ELDREDGE
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
ANN P. DOWLING
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

Abstract

The effectiveness of a cylindrical perforated liner with mean bias flow in its absorption of planar acoustic waves in a duct is investigated. The liner converts acoustic energy into flow energy through the excitation of vorticity fluctuations at the rims of the liner apertures. A one-dimensional model that embodies this absorption mechanism is developed. It utilizes a homogeneous liner compliance adapted from the Rayleigh conductivity of a single aperture with mean flow. The model is evaluated by comparing with experimental results, with excellent agreement. We show that such a system can absorb a large fraction of incoming energy, and can prevent all of the energy produced by an upstream source in certain frequency ranges from reflecting back. Moreover, the bandwidth of this strong absorption can be increased by appropriate placement of the liner system in the duct. An analysis of the acoustic energy flux is performed, revealing that local differences in fluctuating stagnation enthalpy, distributed over a finite length of duct, are responsible for absorption, and that both liners in a double-liner system are absorbant. A reduction of the model equations in the limit of long wavelength compared to liner length reveals an important parameter grouping, enabling the optimal design of liner systems.

Type
Papers
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
149
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The absorption of axial acoustic waves by a perforated liner with bias flow
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The absorption of axial acoustic waves by a perforated liner with bias flow
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The absorption of axial acoustic waves by a perforated liner with bias flow
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *