Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T17:25:39.784Z Has data issue: false hasContentIssue false

The 2-3-4 spike competition in the Rosensweig instability

Published online by Cambridge University Press:  10 May 2019

A. N. Spyropoulos
Affiliation:
School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
A. G. Papathanasiou
Affiliation:
School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
A. G. Boudouvis*
Affiliation:
School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
*
Email address for correspondence: boudouvi@chemeng.ntua.gr

Abstract

The horizontal free surface of a magnetic liquid (ferrofluid) pool turns unstable when the strength of a vertically applied uniform magnetic field exceeds a threshold. The instability, known as normal field instability or Rosensweig’s instability, is accompanied by the formation of liquid spikes either few, in small diameter pools, or many, in large diameter pools; in the latter case, the spikes are arranged in hexagonal or square patterns. In small pools where only few spikes – 2, 3 or 4 in this work – can be accommodated, their appearance/disappearance/re-appearance observed in experiments, as applied field strength varies, is investigated by computer-aided bifurcation and linear stability analysis. The equations of three-dimensional capillary magneto-hydrostatics give rise to a three-dimensional free boundary problem which is discretized by the Galerkin/finite element method and solved for multi-spike surface deformation coupled with magnetic field distribution simultaneously with a compact numerical scheme based on Newton iteration. Standard eigenvalue problems are solved in the course of parameter continuation to reveal the multiplicity and the stability of the emerging deformations. The computational predictions reveal selection mechanisms among equilibrium states and explain the corresponding experimental observations and measurements.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou, B., Wesfreid, J. E. & Roux, S. 2000 The normal field instability in ferrofluids: hexagon-square transition mechanism and wavenumber selection. J. Fluid Mech. 416, 217237.Google Scholar
Boudouvis, A. G.1987 Mechanisms of surface instabilities and pattern formation in ferromagnetic liquids. PhD thesis, University of Minnesota, Minneapolis, MN.Google Scholar
Boudouvis, A. G., Puchalla, J. L., Scriven, L. E. & Rosensweig, R. E. 1987 Normal field instability and patterns in pools of ferrofluid. J. Magn. Magn. Mater. 65 (2), 307310.Google Scholar
Cao, Y. & Ding, Z. J. 2014 Formation of hexagonal pattern of ferrofluid in magnetic field. J. Magn. Magn. Mater. 355, 9399.Google Scholar
Cowley, M. D. & Rosensweig, R. E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30 (4), 671688.Google Scholar
Erhel, J., Burrage, K. & Pohl, B. 1996 Restarted GMRES preconditioned by deflation. J. Comput. Appl. Maths 69 (2), 303318.Google Scholar
Friedrichs, R. & Engel, A. 2001 Pattern and wave number selection in magnetic fluids. Phys. Rev. E 64, 021406.Google Scholar
Gailitis, A. 1977 Formation of the hexagonal pattern on the surface of a ferromagnetic fluid in an applied magnetic field. J. Fluid Mech. 82 (3), 401413.Google Scholar
Gollwitzer, C., Matthies, G., Richter, R., Rehberg, I. & Tobiska, L. 2007 The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J. Fluid Mech. 571, 455474.Google Scholar
Gollwitzer, C., Rehberg, I. & Richter, R. 2006 Via hexagons to squares in ferrofluids: experiments on hysteretic surface transformations under variation of the normal magnetic field. J. Phys.: Condens. Matter 18, S2643.Google Scholar
Gollwitzer, C., Spyropoulos, A. N., Papathanasiou, A. G., Boudouvis, A. G. & Richter, R. 2009 The normal field instability under side-wall effects: comparison of experiments and computations. New J. Phys. 11 (5), 053016.Google Scholar
Ivanov, A. O. & Kuznetsova, O. B. 2001 Magnetic properties of dense ferrofluids: an influence of interparticle correlations. Phys. Rev. E 64 (4), 041405.Google Scholar
Keller, H. B. 1977 Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory (ed. Rabinowitz, P. H.), pp. 359384. Academic.Google Scholar
Knieling, H., Richter, R., Rehberg, I., Matthies, G. & Lange, A. 2007 Growth of surface undulations at the Rosensweig instability. Phys. Rev. E 76, 066301.Google Scholar
Lavrova, O., Matthies, G. & Tobiska, L. 2008 Numerical study of soliton-like surface configurations on a magnetic fluid layer in the Rosensweig instability. Commun. Nonlinear Sci. Numer. Simul. 13 (7), 13021310.Google Scholar
Lavrova, O., Polevikov, V. & Tobiska, L. 2017 Modelling and simulation of magnetic particle diffusion in a ferrofluid layer. Magnetohydrodynamics 52, 439452.Google Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK Users’ Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.Google Scholar
Lloyd, D. J. B., Gollwitzer, C., Rehberg, I. & Richter, R. 2015 Homoclinic snaking near the surface instability of a polarisable fluid. J. Fluid Mech. 783, 283305.Google Scholar
Megalios, E. G., Kapsalis, N., Paschalidis, J., Papathanasiou, A. G. & Boudouvis, A. G. 2005 A simple optical device for measuring free surface deformations of nontransparent liquids. J. Colloid Interface Sci. 288 (2), 508512.Google Scholar
Papathanasiou, A. G. & Boudouvis, A. G. 1998 Three-dimensional instabilities of ferromagnetic liquid bridges. Comput. Mech. 21 (4), 403408.Google Scholar
Pashos, G., Kavousanakis, M. E., Spyropoulos, A. N., Palyvos, J. A. & Boudouvis, A. G. 2009 Simultaneous solution of large-scale linear systems and eigenvalue problems with a parallel GMRES method. J. Comput. Appl. Maths 227 (1), 196205.Google Scholar
Richter, R. & Barashenkov, I. V. 2005 Two-dimensional solitons on the surface of magnetic fluids. Phys. Rev. Lett. 94, 184503.Google Scholar
Richter, R. & Bläsing, J. 2001 Measuring surface deformations in magnetic fluid by radioscopy. Rev. Sci. Instrum. 72 (3), 17291733.Google Scholar
Rosensweig, R. E. 1997 Ferrohydrodynamics. Dover.Google Scholar
Saad, Y. & Schultz, M. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (3), 856869.Google Scholar
Spyropoulos, A. N., Palyvos, J. A. & Boudouvis, A. G. 2004 Bifurcation detection with the (un)preconditioned GMRES(m). Comput. Meth. Appl. Mech. Engng 193 (42–44), 47074716.Google Scholar
Strogatz, S. H. 2015 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, a member of the Perseus Books Group.Google Scholar